The effect of lateral conduction on convective heat transfer measurements using a transient infrared technique over a rough surface is evaluated. The rough surface is a scaled model of gas turbine surface deposits. Comparisons are made between a full 3D finite volume analysis and a simpler 1D transient conduction model. The surface temperature history was measured with a high resolution infrared camera during an impulsively started hot gas flow over the rough test plate at a flow Reynolds number of 750,000. The boundary layer was turbulent with the peak roughness elements protruding just above the boundary layer momentum thickness. The 1D model underestimates the peak to valley variations in surface heat flux by up to a factor of 5 compared with the 3D model with lateral conduction. For the area-averaged surface heat flux, the 1D model predicts higher values than a 3D model for the same surface temperature history. This is due to the larger surface area of the roughness peaks and valleys in the 3D model, which produces a larger initial input of energy at the beginning of the transient. For engineering purposes, where the net heat load into the solid is desired, this lower 3D model result must be multiplied by the wetted-to-planform surface area ratio of the roughness panel. For the roughness model in this study, applying this correction results in a 25% increase in the area-averaged roughness-induced Stanton number augmentation for the 3D rough surface model compared with a flat 1D surface model at the same Reynolds number. Other shortcomings of the transient method for rough surface convective heat transfer measurement are identified.

1.
Hosni
,
M. H.
,
Coleman
,
H. W.
, and
Taylor
,
R. P.
, 1991, “
Heat Transfer Measurements and Calculations in Transitionally Rough Flow
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
404
411
.
2.
Chen
,
P. H.
, and
Goldstein
,
R. J.
, 1991, “
Convective Transport Phenomena on the Suction Surface of a Turbine Blade Including the Influence of Secondary Flows Near the Endwall
,” ASME Paper No. 91-GT-35.
3.
Gao
,
Z.
,
Wright
,
L. M.
, and
Han
,
J.-C.
, 2005, “
Assessment of Steady State PSP and Transient IR Measurement Techniques for Leading Edge Film Cooling
,” Paper No. IMECE2005-80146.
4.
Powell
,
O. A.
, and
Bons
,
J. P.
, 2001, “
Heat Transfer to the Inclined Trailing Wall of an Open Cavity
,”
J. Thermophys. Heat Transfer
0887-8722,
15
(
3
), pp.
293
301
.
5.
Roger
,
M.
, 2007, “
A Periodic Transient Method for High-Resolution Heat Transfer Measurement on Two-Dimensional Curved Surfaces
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
1638
1654
.
6.
Bunker
,
R. S.
, 2004, “
Latticework (Vortex) Cooling Effectiveness Part I: Stationary Channel Experiments
,” ASME Paper No. GT-2004-54157.
7.
Nasir
,
H.
,
Ekkad
,
S. V.
,
Bunker
,
R. S.
, and
Prakash
,
C.
, 2004, “
Effects of Tip Gap Film Injection From Plain and Squealer Blade Tips
,” ASME Paper No. GT-2004-53455.
8.
Ou
,
S.
, and
Rivir
,
R. B.
, 2006, “
Shaped Hole Film Cooling With Pulsed Secondary Flow
,” ASME Paper No. GT–2006-90272.
9.
Nirmalan
,
N. V.
,
Bunker
,
R. S.
, and
Hedlund
,
C. R.
, 2003, “
The Measurement of Full-Surface Internal Heat Transfer Coefficients for Turbine Airfoils Using a Non-Destructive Thermal Inertia Technique
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
83
89
.
10.
Walker
,
D. G.
,
Scott
,
E. P.
, and
Nowak
,
R. J.
, 2000, “
Estimation Methods for Two-Dimensional Conduction Effects of Shock-Shock Heat Fluxes
,”
J. Thermophys. Heat Transfer
0887-8722,
14
(
4
), pp.
553
539
.
11.
Lin
,
M.
, and
Wang
,
T.
, 2000, “
A Transient Liquid Crystal Method Using Hue Angle and a 3D Inverse Transient Conduction Scheme
,” ASME Paper No. 2000-GT-0231.
12.
Bogard
,
D. G.
,
Schmidt
,
D. L.
, and
Tabbita
,
M.
, 1998, “
Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
120
(
2
), pp.
337
342
.
13.
Hosni
,
M. H.
,
Coleman
,
H. W.
, and
Taylor
,
R. P.
, 1991, “
Measurements and Calculations of Rough-Wall Heat Transfer in the Turbulent Boundary Layer
,”
Int. J. Heat Mass Transfer
0017-9310,
34
(
4/5
), pp.
1067
1082
.
14.
Mills
,
A. F.
, 1992,
Heat Transfer
,
1st ed.
,
Irwin
,
Homewood, IL
.
15.
Kakac
,
S.
, and
Yener
,
Y.
, 1992,
Heat Conduction
,
1st ed.
,
Taylor & Francis
,
London
.
16.
Cook
,
W. J.
, and
Felderman
,
E. J.
, 1966, “
Reduction of Data From Thin-Film Heat-Transfer Gages: A Concise Numerical Technique
,”
AIAA J.
,
4
, pp.
561
562
. 0001-1452
17.
Schultz
,
D. L.
, and
Jones
,
T. V.
, 1973, “
Heat-Transfer Measurements in Short-Duration Hypersonic Facilities
,” NATO Advisory Group for Aerospace Research and Development No. 165.
18.
Licu
,
D. N.
,
Findlay
,
M. J.
,
Gartshore
,
I. S.
, and
Salcudean
,
M.
, 2000, “
Transient Heat Transfer Measurements Using a Single Wide-Band Liquid Crystal Test
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
546
552
.
19.
Guo
,
S. M.
,
Lai
,
C. C.
,
Jones
,
T. V.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
, 2000, “
Influence of Surface Roughness on Heat Transfer and Effectiveness for a Fully Film Cooled Nozzle Guide Vane Measured by Wide Band Liquid Crystals and Direct Heat Flux Gages
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
709
716
.
20.
Barigozzi
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
, 2007, “
End-Wall Film Cooling Through Fan-Shaped Holes With Different Area Ratios
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
212
220
.
21.
Lu
,
Y.
,
Dhungel
,
A.
,
Ekkad
,
S. V.
, and
Bunker
,
R. S.
, 2007, “
Film Cooling Measurements for Cratered Cylindrical Inclined Holes
,” ASME Paper No. GT-2007-27386.
22.
Brauckmann
,
D.
, and
von Wolfersdorf
,
J.
, 2005, “
Application of Steady State and Transient IR-Thermography Measurements to Film Cooling Experiments for a Row of Shaped Holes
,” ASME Paper No. GT-2005-68035.
23.
Baldauf
,
S.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2001, “
High-Resolution Measurements of Local Effectiveness From Discrete Hole Film Cooling
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
758
765
.
24.
Ling
,
J. P. C. W.
,
Ireland
,
P. T.
, and
Turner
,
L.
, 2004, “
A Technique for Processing Transient Heat Transfer, Liquid Crystal Experiments in the Presence of Lateral Conduction
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
247
258
.
25.
Bons
,
J. P.
,
Wammack
,
J. E.
,
Crosby
,
J.
,
Fletcher
,
D. H.
, and
Fletcher
,
T. H.
, 2008, “
Evolution of Surface Deposits on a High Pressure Turbine Blade, Part II: Convective Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
130
, p.
021021
.
26.
Bons
,
J. P.
,
Taylor
,
R.
,
McClain
,
S.
, and
Rivir
,
R. B.
, 2001, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
0889-504X,
123
(
4
), pp.
739
748
.
You do not currently have access to this content.