The heat and fluid flow in a fully developed turbulent channel flow have been investigated. The closure model of Reynolds shear stress and Reynolds heat flux as a function of a series of logarithmic functions in the mesolayer variable have been adopted. The interaction between inner and outer layers in the mesolayer (intermediate layer) arising from the balance of viscous effect, pressure gradient and Reynolds shear stress (containing the maxima of Reynolds shear stress) was first proposed by Afzal (1982, “Fully Developed Turbulent Flow in a Pipe: An Intermediate Layer,” Arch. Appl. Mech., 53, 355–377). The unknown constants in the closure models for Reynolds shear stress and Reynolds heat flux have been estimated from the prescribed boundary conditions near the axis and surface of channel. The predictions are compared with the DNS data Iwamoto et al. and Abe et al. for Reynolds shear stress and velocity profile and Abe et al. data of Reynolds heat flux and temperature profile. The limitations of the closure models are presented.

1.
Sreenivasan
,
K. R.
, and
Bershadskii
,
A.
, 2006, “
The Mean Velocity Distribution Near the Peak of the Reynolds Shear Stress, Extending Also to the Buffer Region
,”
IUTAM Symposium on One Hundred Years of Boundary Layer Research
,
G. E. A.
Meier
and
K. R.
Sreenivasan
, eds.,
Springer
,
Dordrecht, The Netherlands
.
2.
Sreenivasan
,
K. R.
, and
Bershadskii
,
A.
, 2006, “
Finite-Reynolds-Number Effects in Turbulence Using Logarithmic Expansions
,”
J. Fluid Mech.
0022-1120,
554
, pp.
477
498
.
3.
Panton
,
R. L.
, 1997, “
A Reynolds Stress Function for Wall Layers
,”
ASME J. Fluids Eng.
0098-2202,
119
, pp.
325
330
.
4.
Panton
,
R. L.
, 2005, “
Review of Wall Turbulence as Described by Composite Expansions
,”
Appl. Mech. Rev.
0003-6900,
58
, pp.
1
40
.
5.
Panton
,
R. L.
, 2007, “
Composite Asymptotic Expansions and Scaling Wall Turbulence
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
365
, pp.
733
754
.
6.
Afzal
,
N.
, 1982, “
Fully Developed Turbulent Flow in a Pipe: An Intermediate Layer
,”
Arch. Appl. Mech.
0939-1533,
53
, pp.
355
377
.
7.
Afzal
,
N.
, 1984, “
The Mesolayer Theory of Turbulent Flows
,”
AIAA J.
0001-1452,
22
, pp.
437
439
.
8.
Afzal
,
N.
, 1982, “
A Sub-Boundary Layer With a Two Dimensional Turbulent Boundary Layer
,”
Journal de Mecanique Theorique et Appliquee
,
1
, pp.
963
973
.
9.
Afzal
,
N.
, 1984, “
Period Between Bursting in Turbulent Shear Flow: Intermediate Scaling
,”
Curr. Sci.
0011-3891,
53
(
12
), pp.
640
642
.
10.
Sahay
,
A.
, 1997, “
The Mean Velocity and the Reynolds Shear Stress in Turbulent Pipe and Channel Flows
,” Ph.D. thesis, Yale University.
11.
Long
,
R. R.
, and
Chen
,
T. C.
, 1981, “
Experimental Evidence of the Existence of the Mesolayer in Turbulent Systems
,”
J. Fluid Mech.
0022-1120,
105
, pp.
19
59
.
12.
Afzal
,
N.
, 1983, “
Three Layer Theory of Turbulent Boundary Layer on a Flat Plate
,”
Proceedings of the Second Asian Congress of Fluid Mechanics
, Science,
Beijing
, pp.
316
321
.
13.
Sreenivasan
,
K. R.
, 1983, “
Characteristics of Fine Scale of Turbulence in Boundary Layers
,”
Proceedings of the Second Asian Congress of Fluid Mechanics
, Science,
Beijing
, pp.
84
90
.
14.
Sreenivasan
,
K. R.
, and
Sahay
,
A.
, 1997, “
The Persistence of Viscous Effects in the Overlap Region, and the Mean Velocity in Turbulent Pipe and Channel Fows
,”
Self Sustaining Mechanisms of Wall Turbulence
,
R.
Panton
, ed.
WIT
,
Bath, UK
.
15.
Sahay
,
A.
, and
Sreenivasan
,
K. R.
, 1999, “
The Wall-Normal Position in Pipe and Channel Flows at Which Viscous and Turbulent Shear Stresses Are Equal
,”
Phys. Fluids
1070-6631,
11
(
10
), pp.
3186
3188
.
16.
McKeon
,
B. J.
, and
Sreenivasan
,
K. R.
, 2007, “
Introduction: Scaling and Structure in High Reynolds Number Wall-Bounded Flows
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
365
, pp.
635
646
.
17.
Sreenivasan
,
K. R.
, 1987, “
A Unified View of the Origin and Morphology of the Turbulent Boundary Layer Structure
,”
Turbulence Management and Relaminarisation
,
H. W.
Liepmann
and
R.
Narasimha
, eds.,
Springer-Verlag
,
New York
, p.
37
61
.
18.
Sreenivasan
,
K. R.
, 1989, “
The Turbulent Boundary Layer
,”
Frontiers in Experimental Fluid Mechanics
,
M.
Gad-el-Hak
, ed.,
Springer-Verlag
,
Berlin
, pp.
159
209
.
19.
Johansson
,
A. V.
, and
Alferdsson
,
P. H.
, 1982, “
On the Structure of Turbulent Channel Flow
,”
J. Fluid Mech.
0022-1120,
121
, pp.
295
314
.
20.
Antonia
,
R. A.
,
Teitel
,
M.
,
Kim
,
J.
, and
Browne
,
L. W. B.
, 1992, “
Low Reynolds-Number Effects in a Fully Developed Turbulent Channel Flow
,”
J. Fluid Mech.
0022-1120,
236
, p.
579
605
.
21.
Tsuji
,
Y.
, 1999, “
Peak Position of Dissipation Spectrum in Turbulent Boundary Layers
,”
Phys. Rev. E
1063-651X,
59
, pp.
7235
7238
.
22.
Guala
,
M.
,
Hommema
,
S. E.
, and
Adrian
,
R. J.
, 2006, “
Large-Scale and Very Large Scale Motions in Turbulent Pipe Flow
,”
J. Fluid Mech.
0022-1120,
554
, pp.
521
542
.
23.
Balakumar
,
B. J.
, and
Adrian
,
R. J.
, 2007, “
Large- and Very-Large Scale Motions in Channel and Boundary Layer Flows
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
365
, pp.
665
681
.
24.
Zanoun
,
E. S.
, 2003, “
Answer to Some Open Questions in Wall-Bounded Laminar and Turbulent Flows
,” Doctor-Ingeniur, University of Erlangen-Nurnberg.
25.
Wei
,
T.
,
McMurtry
,
P.
,
Klewicki
,
J.
, and
Fife
,
P.
, 2005, “
Mesoscaling of the Reynolds Shear Stress in Turbulent Channel and Pipe Flows
,”
AIAA J.
0001-1452,
43
(
11
), pp.
2350
2353
.
26.
Klewicki
,
J. C.
,
Fife
,
P.
,
Wei
,
T.
, and
McMurtry
,
P. A.
, 2006, “
Overview of a Methodology for Scaling the Indeterminate Equations of Wall Turbulence
,”
AIAA J.
0001-1452,
44
(
11
), pp.
2475
2481
,
see also AIAA Paper No. 2005-4671.
27.
Klewicki
,
J.
,
Fife
,
P.
, and
Wei
,
T.
, 2007, “
A Physical Model of the Turbulent Boundary Layer Consonant with Mean Momentum Balance Structure
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
365
,
823
839
.
28.
Fife
,
P.
,
Klewicki
,
J.
,
McMurtry
,
P.
, and
Wei
,
T.
, 2005, “
Multiscaling in the Presence of Indeterminacy: Wall-Induced Turbulence
,”
Multiscale Model. Simul.
1540-3459,
4
(
3
), pp.
936
959
.
29.
Wei
,
T.
,
Fife
,
P.
,
Klewicki
,
J.
, and
McMurtry
,
P.
, 2005, “
Scaling Heat Transfer in Fully Developed Turbulent Channel Flows
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
5284
5296
.
30.
Phuong
,
M. L.
, and
Papavassiliou
,
D. V.
2008, “
On the Scaling of Heat Transfer Using Thermal Flux Gradients for Fully Developed Turbulent Channel and Couette Flows
,”
Int. Commun. Heat Mass Transfer
0735-1933,
35
, pp.
404
412
.
31.
Morrison
,
J. F.
,
McKeon
,
B. J.
,
Jiang
,
W.
, and
Smith
,
A. J.
, 2004, “
Scaling of the Streamwise Velocity Component in Turbulent Pipe Flow
,”
J. Fluid Mech.
0022-1120,
508
, pp.
88
131
.
32.
Morrison
,
J. F.
, 2007, “
The Interaction Between Inner and Outer Regions of Turbulent Wall-Bounded Flow
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
365
, pp.
683
698
.
33.
Wosnik
,
M.
,
Castillo
,
L.
, and
George
,
W. K.
, 2000, “
A Theory for Turbulent Pipe and Channel Flows
,”
J. Fluid Mech.
0022-1120,
421
, pp.
115
145
.
34.
Alferdsson
,
P. H.
, and
Johansson
,
A. V.
, 1984, “
Time Scales in Turbulent Channel Flow
,”
Phys. Fluids
0031-9171,
27
, pp.
1974
1981
.
35.
Shah
,
D. A.
, and
Antonia
,
R. A.
, 1989, “
Scaling of Bursting Period in Turbulent Boundary Layer and Duct Flows
,”
Phys. Fluids A
0899-8213,
1
(
2
), pp.
318
325
.
36.
Osterlund
,
J. M.
,
Lindgren
,
B.
, and
Johansson
,
A. V.
, 2003, “
Flow Structure in Zero Pressure Gradient Turbulent Boundary Layer at High Reynolds Numbers
,”
Eur. J. Mech. B/Fluids
0997-7546,
22
, pp.
379
370
.
37.
Nagano
,
Y.
, and
Houra
,
T.
, 2004, “
Scaling of Near Wall Structures in Turbulent Boundary Layers Subjected to Adverse Pressure Gradient
,”
Reynolds Number Scaling in Turbulent Flow, IUTAM Symposium
,
Kluwer Academic
,
Dordrecht
, pp.
291
296
.
38.
Iwamoto
,
K.
,
Suzuki
,
Y.
, and
Kasagi
,
N.
, 2002, “
Reynolds Number Effect on Wall Turbulence: Toward Effective Feedback Control
,”
Int. J. Heat Fluid Flow
0142-727X,
23
, pp.
678
689
.
39.
McKeon
,
B. J.
, 2003, “
High Reynolds Number Turbulent Pipe Flow
,” Ph.D. thesis, Princeton University.
40.
Seena
,
A.
, and
Afzal
,
N.
, 2008, “
Intermediate Scaling of Turbulent Momentum and Heat Transfer in a Transitional Rough Channel
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
031701
.
41.
Abe
,
H.
,
Kawamura
,
H.
, and
Matsuo
,
Y.
, 2004, “
Surface Heat-Flux Fluctuations in a Turbulent Channel up to Rτ=1020 With Pr=0.025 and 0.71
,”
Int. J. Heat Fluid Flow
0142-727X,
25
, pp.
404
419
.
42.
Abe
,
H.
,
Kawamura
,
H.
, and
Matsuo
,
Y.
, 2001, “
Direct Numerical Simulation of a Fully Developed Turbulent Channel Flow With Respect to the Reynolds Number Dependence
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
382
393
.
43.
Lundgren
,
T. S.
, 2007, “
Asymptotic Analysis of the Constant Pressure Turbulent Boundary Layer
,”
Phys. Fluids
1070-6631,
19
, p.
055105
.
44.
Afzal
,
N.
, and
Bush
,
W. B.
, 1985, “
A Three Layer Asymptotic Analysis of Turbulent Channel Flows
,”
Proc. Indian Acad. Sci., Sect. A
0370-0089,
94
, pp.
135
148
.
45.
Afzal
,
N.
, 1983, “
Analysis of a Turbulent Boundary Layer Subjected to a Strong Adverse Pressure Gradient
,”
Int. J. Eng. Sci.
0020-7225,
21
, pp.
563
576
.
You do not currently have access to this content.