We report measurements of the thermal conductivity of aqueous suspensions of aluminum oxide nanoparticles with nominal diameters of 20nm, 30nm, and 45nm and at volume concentrations up to 10%. Potential complications in the pulsed transient hot-wire technique for characterizing nanofluids are examined, which motivate the development of a microhot strip setup with a small thermal time constant. The average particle size is monitored for samples subjected to different durations of sonication and the thermal conductivity is determined at two different temperatures for each of the samples. The present data do not reveal any anomalous enhancement in the thermal conductivity previously reported for comparable nanofluids. The concentration dependence of the thermal conductivity can be explained using the conventional effective medium model with a physically reasonable set of parameters.

1.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
78
(
6
), pp.
718
720
.
2.
Eastman
,
J. A.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Keblinski
,
P.
, 2004, “
Thermal Transport in Nanofluids
,”
Annu. Rev. Mater. Res.
1531-7331,
34
, pp.
219
246
.
3.
Keblinski
,
P.
,
Eastman
,
J. A.
, and
Cahill
,
D. G.
, 2005, “
Nanofluids for Thermal Transport
,”
Mater. Today
1369-7021,
8
(
36
), pp.
36
44
.
4.
Wang
,
B.-X.
,
Zhou
,
L.-P.
, and
Peng
,
X.-F.
, 2003, “
A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid With Suspension of Nanoparticles
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2665
2672
.
5.
Prasher
,
R.
,
Phelan
,
P. E.
, and
Bhattacharya
,
P.
, 2006, “
Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid)
,”
Nano Lett.
1530-6984,
6
(
7
), pp.
1529
1534
.
6.
Prasher
,
R.
,
Evans
,
W.
,
Meakin
,
P.
,
Fish
,
J.
,
Phelan
,
P.
, and
Keblinski
,
P.
, 2006, “
Effect of Aggregation on Thermal Conduction in Colloidal Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
89
,
143119
.
7.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
, 2005, “
Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids)
,”
Phys. Rev. Lett.
0031-9007,
94
,
025901
.
8.
Chon
,
C. H.
,
Kihm
,
K. D.
,
Lee
,
S. P.
, and
Choi
,
S. U. S.
, 2005, “
Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement
,”
Appl. Phys. Lett.
0003-6951,
87
,
153107
.
9.
Krishnamurthy
,
S.
,
Bhattacharya
,
P.
,
Phelan
,
P. E.
, and
Prasher
,
R. S.
, 2006, “
Enhanced Mass Transport in Nanofluids
,”
Nano Lett.
1530-6984,
6
(
3
), pp.
419
423
.
10.
Li
,
C. H.
, and
Peterson
,
G. P.
, 2006, “
Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids)
,”
J. Appl. Phys.
0021-8979,
99
,
084314
.
11.
Putnam
,
S. A.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
,
Ge
,
Z.
, and
Shimmin
,
R. G.
, 2006, “
Thermal Conductivity of Nanoparticle Suspensions
,”
J. Appl. Phys.
0021-8979,
99
(
8
),
084308
.
12.
Rusconi
,
R.
,
Rodari
,
E.
, and
Piazza
,
R.
, 2006, “
Optical Measurements of the Thermal Properties of Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
89
,
261916
.
13.
Venerus
,
D. C.
,
Kabadi
,
M. S.
,
Lee
,
S.
, and
Perez-Luna
,
V.
, 2006, “
Study of Thermal Transport in Nanoparticle Suspension Using Forced Rayleigh Scattering
,”
J. Appl. Phys.
0021-8979,
100
,
094310
.
14.
Patel
,
H. E.
,
Das
,
S. K.
,
Sundararajan
,
T.
,
Nair
,
A. S.
,
George
,
B.
, and
Pradeep
,
T.
, 2003, “
Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects
,”
Appl. Phys. Lett.
0003-6951,
83
(
14
),
2931
2933
.
15.
Gustafsson
,
S. E.
,
Karawacki
,
E.
, and
Chohan
,
M. A.
, 1986, “
Thermal Transport Studies of Electrically Conducting Materials Using the Transient Hot-Strip Technique
,”
J. Phys. D
0022-3727,
19
(
5
), pp.
727
735
.
16.
Incropera
,
R. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
, 2007,
Introduction to Heat Transfer
,
5th ed.
,
Wiley
,
New York
.
17.
Vadasz
,
P.
, 2006, “
Heat Conduction in Nanofluid Suspensions
,”
ASME J. Heat Transfer
0022-1481,
128
(
5
), pp.
465
477
.
18.
Nan
,
C.-W.
,
Birringer
,
R.
,
Clarke
,
D. R.
, and
Gleiter
,
H.
, 1997, “
Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance
,”
J. Appl. Phys.
0021-8979,
81
(
10
), pp.
6692
6699
.
19.
Hung
,
M.-T.
,
Choi
,
O.
,
Guo
,
Z.
,
Hahn
,
H. T.
, and
Ju
,
Y. S.
, 2006, “
Heat Transport in Graphite Nanoplatelet (GNP)-Reinforced Polymeric Nanocomposites and Aluminum Oxide Nanofluids
,” Proceedings of the 9th AIAA∕ASME Joint Thermophysics and Heat Transfer Conference,
San Francisco, CA
, Jun. 5–8, Paper No. AIAA 2006-3112.
20.
Tomaru
,
T.
,
Suzuki
,
T.
,
Uchiyama
,
T.
,
Yamamoto
,
A.
,
Shintomi
,
T.
,
Taylor
,
C. T.
,
Yamamoto
,
K.
,
Miyoki
,
S.
,
Ohashi
,
M.
, and
Kuroda
,
K.
, 2002, “
Maximum Heat Transfer Along a Sapphire Suspension Fiber for a Cryogenic Interferometric Gravitational Wave Detector
,”
Phys. Lett. A
0375-9601,
301
, pp.
215
219
.
21.
Ju
,
Y. S.
, 2005, “
Impact of Nonequilibrium Between Electrons and Phonons on Heat Transfer in Metallic Nanoparticles Suspended in Dielectric Media
,”
ASME J. Heat Transfer
0022-1481,
127
(
12
), pp.
1400
1402
.
22.
Hong
,
T.-K.
,
Yang
,
H.-S.
, and
Choi
,
C. J.
, 2005, “
Study of the Enhanced Thermal Conductivity of Fe Nanofluids
,”
J. Appl. Phys.
0021-8979,
97
,
064311
.
23.
Waite
,
T. D.
,
Cleaver
,
J. K.
, and
Beattie
,
J. K.
, 2001, “
Aggregation Kinetics and Fractal Structure of γ-Alumina Assemblages
,”
J. Clim.
0894-8755,
241
, pp.
333
339
.
24.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, 2003, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
(
4
), pp.
567
574
.
You do not currently have access to this content.