Numerical simulations of time-dependent thermal energy transport in semiconductor thin films are performed using the lattice Boltzmann method applied to phonon transport. The discrete lattice Boltzmann Method is derived from the continuous Boltzmann transport equation assuming nonlinear, frequency-dependent phonon dispersion for acoustic and optical phonons. Results indicate that the heat conduction in silicon thin films displays a transition from diffusive to ballistic energy transport as the characteristic length of the system becomes comparable to the phonon mean free path and that the thermal energy transport process is characterized by the propagation of multiple superimposed phonon waves. The methodology is used to characterize the time-dependent temperature profiles inside films of decreasing thickness. Thickness-dependent thermal conductivity values are computed based on steady-state temperature distributions obtained from the numerical models. It is found that reducing feature size into the subcontinuum regime decreases thermal conductivity when compared to bulk values, at a higher rate than what was displayed by the Debye-based gray lattice Boltzmann method.

1.
Flik
,
M.
,
Choi
,
B.
, and
Goodson
,
K.
, 1992, “
Heat Transfer Regimes in Microstructures
,”
ASME J. Heat Transfer
0022-1481,
114
, pp.
666
674
.
2.
Majumdar
,
A.
, 1993, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
7
16
.
3.
International Technology Roadmap for Semiconductors, ITRS 20053 update (http://public.itrs.net/http://public.itrs.net/).
4.
Succi
,
S.
, 2001,
The Lattice-Boltzmann Equation for Fluid Dynamics and Beyond
,
Clarendon Press
,
Oxford, UK
.
5.
Zhang
,
W.
, and
Fisher
,
T. S.
, 2002, “
Application of the Lattice-Boltzmann Method to Sub-Continuum Heat Conduction
,” ASME Paper No. IMECE2002-32122.
6.
Escobar
,
R. A.
,
Ghai
,
S. S.
,
Jhon
,
M. S.
, and
Amon
,
C. H.
, 2006, “
Multi-Length and Time Scale Thermal Transport Using the Lattice Boltzmann Method With Application to Electronics Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
97
107
.
7.
Ghai
,
S. S.
,
Kim
,
W. T.
,
Escobar
,
R. A.
,
Amon
,
C. H.
, and
Jhon
,
M. S.
, 2005, “
A Novel Heat Transfer Model and Its Application to Information Storage Systems
,”
J. Appl. Phys.
0021-8979,
97
, p.
10P703
.
8.
Narumanchi
,
S.
,
Murthy
,
J.
, and
Amon
,
C.
, 2005, “
Comparison of Different Phonon Transport Models for Predicting Heat Conduction in Silicon-on-Insulator Transistors
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
713
723
.
9.
Dolling
,
G.
, 1963, “
Lattice Vibrations in Crystals With the Diamond Structure
,”
Symposium on Inelastic Scattering of Neutrons in Solids and Liquids
,
IAEA
,
Vienna
, pp.
37
48
.
10.
Tien
,
C. L.
,
Majumdar
,
A.
, and
Gerner
,
F. M.
, 1998,
Microscale Heat Conduction
,
Taylor & Francis
,
Washington, D.C.
.
11.
Narumanchi
,
S. V.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2003, “
Simulation of Unsteady Small Heat Source Effects in Sub-Micron Heat Conduction
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
896
903
.
12.
Escobar
,
R. A.
, 2005, “
Lattice Boltzmann Modeling of Phonon Transport in Silicon Films
,” Ph.D. thesis, Department of Mechanical Engineering, Carnegie Mellon University.
13.
Callaway
,
J.
, 1959, “
Model for Lattice Thermal Conductivity at Low Temperatures
,”
Phys. Rev.
0031-899X,
113
, pp.
1046
1051
.
14.
Holland
,
M. G.
, 1963, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
0031-899X,
132
(
6
), pp.
2461
2471
.
15.
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
, 2004, “
Quantitative Validation of the Boltzmann Transport Equation Phonon Thermal Conductivity Model Under the Single-Mode Relaxation Time Approximation
,”
Phys. Rev. B
0163-1829,
69
, p.
094303
.
16.
McGaughey
,
A. J. H.
,
Chung
,
J. D.
, and
Kaviany
,
M.
, 2003, “
Integration of Molecular Dynamics Simulations and Boltzmann Transport Equation in Phonon Thermal Conductivity Analysis
,” ASME Paper No. IMECE2003-41899.
17.
Tiwari
,
M. D.
, and
Agrawal
,
Bal K.
, 1971, “
Analysis of the Lattice Thermal Conductivity of Germanium
,”
Phys. Rev. B
0556-2805,
4
, pp.
3527
3532
.
18.
Sood
,
K. C.
, and
Roy
,
M. K.
, 1993, “
Longitudinal Phonons and HighTemperature Heat Conduction in Germanium
,”
J. Phys.: Condens. Matter
0953-8984,
5
, pp.
301
312
.
19.
Klemens
,
P. G.
, 1958, “
Thermal Conductivity and Lattice Vibrational Modes
,”
Solid State Physics
,
F.
Seitz
and
D.
Thurnbull
, eds.,
Academic Press
,
New York
, pp.
1
98
.
20.
Klemens
,
P. G.
, 1969, “
Theory of Thermal Conductivity of Solids
,”
Thermal Conductivity
,
R. P.
Tye
, ed.,
Academic
,
London
, pp.
1
68
.
21.
Han
,
Y.-J.
, and
Klemens
,
P. G.
, 1993, “
Anharmonic Thermal Resistivity of Dielectric Crystals at Low Temperatures
,”
Phys. Rev. B
0163-1829,
48
, pp.
6033
6042
.
22.
Chung
,
J. D.
,
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
, 2004, “
Role of Phonon Dispersion in Lattice Thermal Conductivity Analysis
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
376
380
.
23.
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
, 2004, “
Thermal Conductivity Decomposition and Analysis Using Molecular Dynamics Simulations. Part I. Lennard-Jones Argon
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
1783
1798
.
24.
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
, 2004, “
Thermal Conductivity Decomposition and Analysis Using Molecular Dynamics Simulations. Part II. Complex Silica Crystals
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
1799
1816
.
25.
Pop
,
E.
,
Sinha
,
S.
, and
Goodson
,
K. E.
, 2003, “
Detailed Phonon Generation Simulations Via the Monte Carlo Method
,” ASME Paper No. HT2003-47312.
26.
Sinha
,
S.
, and
Goodson
,
K.
, 2005, “
Review: Multiscale Thermal Modeling in Nanoelectronics
,”
Int. J. Multiscale Comp. Eng.
1543-1649,
3
(
1
), pp.
107
133
.
27.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2003, “
Simulations of Heat Conduction in Sub-Micron Silicon-on-Insulator Transistors Accounting for Phonon Dispersion and Polarization
,” ASME Paper No. IMECE2003-42447.
28.
Ho
,
C.
,
Powell
,
R.
, and
Liley
,
P.
, 1972, “
Thermal Conductivity of the Elements
,”
J. Phys. Chem. Ref. Data
0047-2689,
1
, pp.
279
421
.
29.
Escobar
,
R.
,
Smith
,
B.
, and
Amon
,
C.
, 2006, “
Lattice Boltzmann Modeling of Subcontinuum Energy Transport in Crystalline and Amorphous Microelectronics Devices
,”
ASME J. Electron. Packag.
1043-7398,
128
, pp.
115
124
.
30.
Escobar
,
R.
, and
Amon
,
C. H.
, 2007, “
Influence of Phonon Dispersion on Transient Thermal Response of Silicon-on-Insulator Transistors Under Self-Heating Conditions
,”
ASME J. Heat Transfer
0022-1481,
129
(
7
), pp.
790
797
.
You do not currently have access to this content.