The solid-gas contacting for thermal storage and thermal recovery is generally carried out in fixed-bed regenerators. Compared to a fixed bed, higher thermal recovery can be achieved in a moving bed with countercurrent flow of gas and solids. However, the moving beds have not been widely used due to difficulties in solid handling. The relative movement of the bed to the gas flow can be simulated in a fixed bed by moving the inlet and outlet ports of the gas along the length of the bed. Similar simulated moving beds are already in use for adsorptive separation of liquid mixtures in chemical industries. A novel moving-port system is proposed to achieve simulated moving-bed operation in a fixed bed. We have carried out studies to evaluate the relative performance of the fixed and the simulated moving-bed heat regenerators. We have examined the feasibility of replacing a set of three blast furnaces and thermal regeneration of an adsorption bed with the simulated moving-bed regenerator. It is found that high-heat transfer intensification can be achieved. The results indicate that three blast-furnace stoves can be replaced by a simulated moving-bed regenerator of volume of about 100 times smaller than the stoves. The heat-transfer intensification is high enough to carry out thermal regeneration of the adsorption beds in a cycle time that is in the range of the pressure swing adsorption, which is favored for its faster rate of regeneration.

1.
Tsouris
,
C.
, and
Porcelli
,
J. V.
, 2003, “
Process Intensification—Has Its Time Finally Come?
,”
Chem. Eng. Prog.
0360-7275,
99
, pp.
50
55
.
2.
Willmott
,
A. J.
, 1969, “
The Regenerative Heat Exchanger Computer Representation
,”
Int. J. Heat Mass Transfer
0017-9310,
12
, pp.
997
1014
.
3.
Burns
,
A.
, and
Willmott
,
A. J.
, 1978, “
Transient Performance of Periodic Flow Regenerators
,”
Int. J. Heat Mass Transfer
0017-9310,
21
, pp.
623
627
.
4.
Heggs
,
P. A.
, and
Foumeny
,
E. A.
, 1986, “
Thermal Performance of Diabatic Cyclic Regenerators
,”
Numer. Heat Transfer
0149-5720,
9
, pp.
182
199
.
5.
Hill
,
A.
, and
Willmott
,
A. J.
, 1987, “
A Robust Method for Regenerative Heat Exchanger Calculations
,”
Int. J. Heat Mass Transfer
0017-9310,
30
, pp.
241
249
.
6.
Hill
,
A.
, and
Willmott
,
A. J.
, 1989, “
Accurate and Rapid Thermal Regenerator Calculations
,”
Int. J. Heat Mass Transfer
0017-9310,
32
, pp.
465
476
.
7.
Foumeny
,
E. A.
, and
Pahlevanzadeh
,
H.
, 1994, “
Performance Evaluation of Thermal Regenerators
,”
Heat Recovery Syst. CHP
0890-4332,
14
, pp.
79
84
.
8.
Klein
,
H.
, and
Eigenberger
,
G.
, 2001, “
Approximate Solutions for Metalic Regenerative Heat Exchangers
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
3553
3563
.
9.
Tomeczek
,
J.
, and
Wnek
,
M.
, 2006, “
A Rapid Method for Counter-Flow Heat Regenerator Calculation
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
4194
4199
.
10.
Levenspiel
,
O.
, 1983, “
Design of Long Regenerators by Use of the Dispersion Model
,”
Chem. Eng. Sci.
0009-2509,
38
(
12
), pp.
20
35
.
11.
Zarrinehkafsh
,
M. T.
, and
Sadermeli
,
M.
, 2004, “
Simulation of Fixed Bed Regenerative Heat Exchangers for Flue Gas Heat Recovery
,”
Appl. Therm. Eng.
1359-4311,
24
, pp.
373
382
.
12.
Frigerio
,
S.
,
Mehl
,
M.
,
Ranzi
,
E.
,
Svhweiger
,
D.
, and
Schedler
,
J.
, 2007, “
Improve Efficiency of Thermal Regenerators and VOCs Abatement Systems: An Experimental and Modeling Study
,”
Exp. Therm. Fluid Sci.
0894-1777,
31
, pp.
403
411
.
13.
Muske
,
K. R.
,
Howse
,
J. W.
,
Hansen
,
G. A.
, and
Cagliostro
,
D. J.
, 2000, “
Model-Based Control of a Thermal Regenerator. Part I: Dynamic Model
,”
Comput. Chem. Eng.
0098-1354,
24
, pp.
2519
2531
.
14.
Muske
,
K. R.
,
Howse
,
J. W.
,
Hansen
,
G. A.
, and
Cagliostro
,
D. J.
, 2000, “
Model-Based Control of a Thermal Regenerator. Part II: Control and Estimation
,”
Comput. Chem. Eng.
0098-1354,
24
, pp.
2507
2517
.
15.
Amundson
,
N. R.
, 1956, “
Solid-Fluid Interactions in Fixed and Moving Beds
,”
Ind. Eng. Chem.
0019-7866,
48
, pp.
26
43
.
16.
William
,
D.
, and
Neal
,
R.
, 1950, “
Solid-Fluid Heat Exchange in Moving Beds
,”
Ind. Eng. Chem.
0019-7866,
42
, pp.
1481
1488
.
17.
Ssastamoinen
,
J. J.
, 2004, “
Heat Exchange Between Two Coupled Moving Beds by Fluid Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
1535
1547
.
18.
Caputo
,
A. C.
, and
Pelagagge
,
P. M.
, 1999, “
Heat Recovery From Moving Cooling Beds: Transient Modeling by Dynamic Simulation
,”
Appl. Therm. Eng.
1359-4311,
19
, pp.
21
35
.
19.
Handley
,
D.
, and
Heggs
,
P. J.
, 1969, “
The Effect of Thermal Conductivity of the Packing Material on Transient Heat Transfer in a Fixed Bed
,”
Int. J. Heat Mass Transfer
0017-9310,
12
, pp.
549
570
.
20.
Ruthven
,
D. M.
,
Farooq
,
S.
, and
Knaebel
,
K. S.
, 1994,
Pressure Swing Adsorption
,
VCH
,
New York
.
21.
Yang
,
R. T.
, 1987,
Gas Separation by Adsorption Processes
,
Imperial College Press
,
London
.
22.
Suzuki
,
M.
, 1990,
Adsorption Engineering
,
Elsevier Science
,
Amsterdam
.
23.
Wakao
,
N.
, and
Kaguei
,
S.
, 1982,
Heat Transfer in Packed Beds
,
Gordon and Breach Science
,
London
.
24.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
, 2002,
Transport Phenomena
,
2nd ed.
Wiley
,
New York
, p.
300
.
25.
Ferziger
,
J. H.
, 1998,
Numerical Methods of Engineering Applications
,
2nd ed.
,
Wiley
,
New York
.
26.
McCabe
,
W. L.
,
Smith
,
J. C.
, and
Harriott
,
P.
, 2001,
Unit Operations of Chemical Engineering
,
6th ed.
,
McGraw-Hill
,
New York
.
27.
Schofield
,
J.
,
Butterfield
,
P.
, and
Young
,
P. A.
, 1961, “
Hot Blast Stoves
,”
J. Iron Steel Inst., London
0021-1567,
199
, pp.
229
240
.
28.
Schofield
,
J.
,
Butterfield
,
P.
, and
Young
,
P. A.
, 1963, “
Hot Blast Stoves: Part II
,”
J. Iron Steel Inst., London
0021-1567,
201
, pp.
497
508
.
29.
Rao
,
D. P.
,
Sivakumar
,
S. V.
,
Mandal
,
S.
,
Kota
,
S.
, and
Ramaprasad
,
B. S. G.
, 2005, “
Novel Simulated Moving-Bed Adsorber for the Fractionation of Gas Mixtures
,”
J. Chromatogr., A
0021-9673,
1069
, pp.
141
151
.
You do not currently have access to this content.