In the present case, the conjugate heat transfer involving the cooling of a heated slab by a turbulent plane wall jet has been numerically solved. The bottom of the solid slab is maintained at a hot uniform temperature, whereas the wall jet temperature, is equal to the ambient temperature. The Reynolds number considered is 15,000 because it has already been experimentally found and reported that the flow becomes fully turbulent and is independent of the Reynolds number. The high Reynolds number two-equation model (κϵ) has been used for the turbulence modeling. The parameters chosen for the study are the conductivity ratio of the solid-fluid (K), the solid slab thickness (S), and the Prandtl number (Pr). The ranges of parameters are K=11000, S=110, and Pr=0.01100. Results for the solid-fluid interface temperature, local Nusselt number, local heat flux, average Nusselt number, and average heat transfer are presented and discussed.

1.
Luikov
,
A. V.
,
Aleksashenko
,
V. A.
, and
Aleksashenko
,
A. A.
, 1971, “
Analytical Methods of Solution of Conjugated Problems in Convective Heat Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
14
, pp.
1047
1056
.
2.
Glauert
,
M. B.
, 1956, “
The Wall Jet
,”
J. Fluid Mech.
0022-1120,
1
, pp.
625
643
.
3.
Seban
,
R. A.
, and
Back
,
L. H.
, 1961, “
Velocity and Temperature Profiles in a Wall Jet
,”
Int. J. Heat Mass Transfer
0017-9310,
3
, pp.
255
265
.
4.
Launder
,
B. E.
, and
Rodi
,
W.
, 1981, “
The Turbulent Wall Jet
,”
Prog. Aerosp. Sci.
0376-0421,
19
(
2–4
), pp.
81
128
.
5.
Launder
,
B. E.
, and
Rodi
,
W.
, 1983, “
The Turbulent Wall Jet-Measurements and Modeling
,”
Annu. Rev. Fluid Mech.
0066-4189,
15
, pp.
429
459
.
6.
Dakos
,
T.
,
Verriopoulos
,
C. A.
, and
Gibson
,
M. M.
, 1984, “
Turbulent Flow With Heat Transfer in Plane and Curved Wall Jets
,”
J. Fluid Mech.
0022-1120,
145
, pp.
339
360
.
7.
Kanna
,
P. R.
, and
Das
,
M. K.
, 2005, “
Conjugate Forced Convection Heat Transfer From a Flat Plate by Laminar Plane Wall Jet Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
14
), pp.
2896
2910
.
8.
Iaccarino
,
G.
,
Ooi
,
A.
,
Durbin
,
P. A.
, and
Behnia
,
M.
, 2002, “
Conjugate Heat Transfer Predictions in Two-Dimensional Ribbed Passages
,”
Int. J. Heat Fluid Flow
0142-727X,
23
, pp.
340
345
.
9.
Kassab
,
A.
,
Divo
,
E.
,
Heidmann
,
J.
,
Steinthorsson
,
E.
, and
Rodrignez
,
F.
, 2003, “
BEM∕FVM Conjugate Heat Transfer Analysis of a Three-Dimensional Film Cooled Turbine Blade
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
13
, pp.
581
610
.
10.
Hsieh
,
K. J.
, and
Lien
,
F. S.
, 2005, “
Conjugate Turbulent Forced Convection in a Channel With an Array of Ribs
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
15
(
5
), pp.
462
482
.
11.
Holland
,
J. T.
, and
Liburdy
,
J. A.
, 1990, “
Measurements of the Thermal Characteristics of Heated Offset Jets
,”
Int. J. Heat Mass Transfer
0017-9310,
33
(
1
), pp.
69
78
.
12.
Biswas
,
G.
, 2002, “
The κ‐ϵ Model, the RNG κ‐ϵ Model and the Phase-Averaged Model
,”
Turbulent Flows: Fundamentals, Experiments and Modeling
,
G.
Biswas
and
V.
Eswaran
, eds.,
Narosa
,
New Delhi, India
, Chap. 11, pp.
339
375
.
13.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
14.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
, 1996,
An Introduction to Computational Fluid Dynamics. The Finite Volume Method
,
Longmans, Green
,
New York
.
15.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1974, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
3
, pp.
269
289
.
16.
Pelfrey
,
J. R. R.
, and
Liburdy
,
J. A.
, 1986, “
Mean Flow Characteristics of a Turbulent Offset Jet
,”
ASME Trans. J. Fluids Eng.
0098-2202,
108
, pp.
82
88
.
17.
Vishnuvardhanarao
,
E.
, and
Das
,
M. K.
, 2008, “
Computation of Mean Flow and Thermal Characteristics of Incompressible Turbulent Offset Jet Flows
,”
Numer. Heat Transfer, Part A
1040-7782,
53
, pp.
843
869
.
You do not currently have access to this content.