The transient motion and the heat transfer of a viscous incompressible fluid contained between two vertically eccentric spheres maintained at different temperatures and rotating about a common axis with different angular velocities are numerically considered when the angular velocities are arbitrary functions of time. The resulting flow pattern, temperature distribution, and heat transfer characteristics are presented for the various cases including exponential and sinusoidal angular velocities. Long delays in heat transfer of large portions of the fluid in the annulus are observed because of the angular velocities of the corresponding spheres. As the eccentricity increases and the gap between the spheres decreases, the Coriolis forces and convection heat transfer effect in the narrower portion increase. Special results for concentric spheres are obtained by letting eccentricity tends to zero.

1.
Howarth
,
L.
, 1951, “
Note on Boundary Layer on a Rotating Sphere
,”
Philos. Mag.
0031-8086,
7
(
42
), pp.
1308
1311
.
2.
Proudman
,
I.
, 1956, “
The Almost-Rigid Rotation of Viscous Fluid Between Concentric Spheres
,”
J. Fluid Mech.
0022-1120,
1
, pp.
505
516
.
3.
Lord
,
R. G.
, and
Bowden
,
F. P.
, 1963, “
Boundary Layer on a Rotating Sphere
,”
Proc. R. Soc. London, Ser. A
1364-5021,
271
, pp.
143
146
.
4.
Fox
,
J.
, 1964, “
Singular Perturbation of Viscous Fluid Between Spheres
,” NASA TN D-2491, pp.
1
50
.
5.
Greenspan
,
H. P.
, 1964, “
Axially Symmetric Motion of a Rotating Fluid in a Spherical Annulus
,”
J. Fluid Mech.
0022-1120,
21
, pp.
673
677
.
6.
Carrier
,
G. F.
, 1966, “
Some Effects of Stratification and Geometry in Rotating Fluids
,”
J. Fluid Mech.
0022-1120,
24
, pp.
641
659
.
7.
Stewartson
,
K.
, 1966, “
On Almost Rigid Rotations. Part 2
,”
J. Fluid Mech.
0022-1120,
26
, pp.
131
144
.
8.
Pearson
,
C.
, 1967, “
A Numerical Study of the Time-Dependent Viscous Flow Between Two Rotating Spheres
,”
J. Fluid Mech.
0022-1120,
28
, pp.
323
336
.
9.
Munson
,
B. R.
, and
Joseph
,
D. D.
, 1971, “
Viscous Incompressible Flow Between Concentric Rotating Spheres, Part I: Basic Flow
,”
J. Fluid Mech.
0022-1120,
49
, pp.
289
303
.
10.
Douglass
,
R. W.
,
Munson
,
B. R.
, and
Shaughnessy
,
E. J.
, 1978, “
Thermal Convection in Rotating Spherical Annuli-1. Forced Convection
,”
Int. J. Heat Mass Transfer
0017-9310,
21
, pp.
1543
1553
.
11.
Munson
,
B. R.
, and
Douglass
,
R. W.
, 1979, “
Viscous Flow in Oscillatory Spherical Annuli
,”
Phys. Fluids
0031-9171,
22
(
2
), pp.
205
208
.
12.
Gagliardi
,
J. C.
,
Nigro
,
N. J.
,
Elkouh
,
A. F.
, and
Yang
,
J. K.
, 1990, “
Study of the Axially Symmetric Motion of an Incompressible Viscous Fluid Between Two Concentric Rotating Spheres
,”
J. Eng. Math.
0022-0833,
24
, pp.
1
23
.
13.
Yang
,
J. K.
,
Nigro
,
N. J.
, and
Elkouh
,
A. F.
, 1989, “
Numerical Study the Axially Symmetric Motion of an Incompressible Viscous Fluid in an Annulus Between Two Concentric Rotating Spheres
,”
Int. J. Numer. Methods Fluids
0271-2091,
9
, pp.
689
712
.
14.
Ni
,
W.
, and
Nigro
,
N. J.
, 1994, “
Finite Element Analysis of the Axially Symmetric Motion of an Incompressible Viscous Fluid in a Spherical Annulus
,”
Int. J. Numer. Methods Fluids
0271-2091,
19
, pp.
207
236
.
15.
Press
,
W. H.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
, and
Vetterling
,
W. T.
, 1997,
Numerical Recipes: The Art of Scientific Computing
,
Cambridge University Press
,
Cambridge
.
You do not currently have access to this content.