Heat transfer coefficients are experimentally measured in a rotating cooling channel used to model an internal cooling passage near the trailing edge of a gas turbine blade. The regionally averaged heat transfer coefficients are measured in a wedge-shaped cooling channel (Dh=2.22cm, Ac=7.62cm2). The Reynolds number of the coolant varies from 10,000 to 40,000. By varying the rotational speed of the channel, the rotation number and buoyancy parameter range from 0 to 1.0 and 0 to 3.5, respectively. Significant variation of the heat transfer coefficients in both the spanwise and streamwise directions is apparent. Spanwise variation is the result of the wedge-shaped design, and streamwise variation is the result of the sharp entrance into the channel and the 180deg turn at the outlet of the channel. With the channel rotating at 135° with respect to the direction of rotation, the heat transfer coefficients are enhanced on every surface of the channel. Both the nondimensional rotation number and buoyancy parameter have proven to be excellent parameters to quantify the effect of rotation over the extended ranges achieved in this study.

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
, 2000,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor and Francis
,
New York
.
2.
Kays
,
W. M.
, and
Crawford
,
M. E.
, 1993,
Convective Heat and Mass Transfer
, 3rd ed.,
McGraw-Hill
,
New York
, pp.
311
349
.
3.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Hajek
,
T. J.
, 1991, “
Heat Transfer in Rotating Passage With Smooth Walls and Radial Outward Flow
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
42
51
.
4.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Kopper
,
F. C.
, 1991, “
Heat Transfer in Rotating Passage With Smooth Walls
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
321
330
.
5.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
, 1994, “
Heat Transfer in Rotating Serpentine Passage With Selected Model Orientations for Smooth or Skewed Trip Walls
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
738
744
.
6.
Dutta
,
S.
, and
Han
,
J. C.
, 1996, “
Local Heat Transfer in Rotating Smooth and Ribbed Two-Pass Square Channels With Three Channel Orientations
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
578
584
.
7.
Park
,
C. W.
, and
Lau
,
S. C.
, 1998, “
Effect of Channel Orientation of Local Heat (Mass) Distributions in Rotating Two-Pass Square Channel With Smooth Walls
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
624
632
.
8.
Bons
,
J. P.
, and
Kerrebrock
,
J. L.
, 1999, “
Complementary Velocity and Heat Transfer Measurements in a Rotating Cooling Passage With Smooth Walls
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
651
662
.
9.
Azad
,
G. S.
,
Uddin
,
M. J.
,
Han
,
J. C.
,
Moon
,
H. K.
, and
Glezer
,
B.
, 2002, “
Heat Transfer in a Two-Pass Rectangular Rotating Channel With 45-Deg Angled Rib Turbulators
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
251
259
.
10.
Griffith
,
T. S.
,
Al-Hadhrami
,
L.
, and
Han
,
J. C.
, 2002, “
Heat Transfer in Rotating Rectangular Cooling Channels (AR=4) With Angled Ribs
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
617
625
.
11.
Wright
,
L. M.
,
Lee
,
E.
, and
Han
,
J. C.
, 2005, “
Influence of Entrance Geometry on Heat Transfer in Rotating Rectangular Cooling Channels (AR=4:1) With Angled Ribs
,”
ASME J. Heat Transfer
0022-1481,
127
(
4
), pp.
378
387
.
12.
Acharya
,
S.
,
Agarwal
,
P.
, and
Nikitopoulos
,
D. E.
, 2004, “
Heat/Mass Transfer in a 4:1 AR Smooth and Ribbed Coolant Passage With Rotation in 90-Degreee and 45-Degree Orientations
,” ASME Paper No. GT2004-53928.
13.
Zhou
,
F.
,
Lagrone
,
J.
, and
Acharya
,
S.
, 2004, “
Internal Cooling in 4:1 AR Passages at High Rotation Numbers
,” ASME Paper No. GT2004-53501.
14.
Willett
,
F. T.
, and
Bergles
,
A. E.
, 2001, “
Heat Transfer in Rotating Narrow Rectangular Ducts With Heated Sides Orientated at 60° to the R-Z Plane
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
288
295
.
15.
Cho
,
H. H.
,
Kim
,
Y. Y.
,
Kim
,
K. M.
, and
Rhee
,
D. H.
, 2003, “
Effects of Rib Arrangements and Rotation Speed on Heat Transfer in a Two-Pass Duct
,” ASME Paper No. 2003-GT-38609.
16.
Agarwal
,
P.
,
Acharya
,
S.
, and
Nikitopoulos
,
D. E.
, 2003, “
Heat/Mass Transfer in 1:4 Rectangular Passages With Rotation
,” ASME Paper No. 2003-GT-38615.
17.
Fu
,
W. L.
,
Wright
,
L. M.
, and
Han
,
J. C.
, 2005, “
Heat Transfer in Two-Pass Rotating Rectangular Channels (AR=1:2 and AR=1:4) With Smooth Walls
,”
ASME J. Heat Transfer
0022-1481,
127
(
3
), pp.
265
277
.
18.
Fu
,
W. L.
,
Wright
,
L. M.
, and
Han
,
J. C.
, 2005, “
Buoyancy Effects on Heat Transfer in Five Different Aspect-Ratio Rectangular Channels With Smooth Walls and 45-Degree Ribbed Walls
,” ASME Paper No. GT 2005-68493.
19.
Lowdermilk
,
W. H.
,
Weiland
,
W. F.
, and
Livingood
,
J. N. B.
, 1954, “
Measurement of Heat Transfer and Friction Coefficients for Flow of Air in Noncircular Ducts at High Surface Temperatures
,” NACA RM E53J07.
20.
Ahn
,
S. W.
, and
Son
,
K. P.
, 2002, “
Heat Transfer and Pressure Drop in the Roughened Equilateral Triangular Duct
,”
Int. Commun. Heat Mass Transfer
0735-1933,
29
, pp.
479
488
.
21.
Obot
,
N. T.
, 1985, “
Heat Transfer in a Smooth Scalene Triangular Duct With Two Rounded Corners
,”
Int. Commun. Heat Mass Transfer
0735-1933,
12
, pp.
251
258
.
22.
Zhang
,
Y. M.
,
Gu
,
W. Z.
, and
Han
,
J. C.
, 1994, “
Augmented Heat Transfer in Triangular Ducts With Full and Partial Ribbed Walls
,”
J. Thermophys. Heat Transfer
0887-8722,
8
, pp.
574
579
.
23.
Eckert
,
E. R. G.
, and
Irvine
,
T. F.
, 1960, “
Pressure Drop and Heat Transfer in a Duct With Triangular Cross Section
,”
ASME J. Heat Transfer
0022-1481,
82
, pp.
125
138
.
24.
Ainsworth
,
R. W.
, and
Jones
,
T. V.
, 1979, “
Measurements of Heat Transfer in Circular, Rectangular, and Triangular Ducts, Representing Typical Turbine Blade Cooling Passages Using Transient Techniques
,” ASME Paper No. 79-GT-40.
25.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Cho
,
Y. I.
, 1998,
Handbook of Heat Transfer
, 3rd ed.,
McGraw Hill
,
Boston, MA
.
26.
Taslim
,
M. E.
,
Li
,
T.
, and
Spring
,
S. D.
, 1995, “
Experimental Study of the Effects of Bleed Holes on Heat Transfer and Pressure Drop in Trapezoidal Passages With Tapered Turbulators
,”
ASME J. Turbomach.
0889-504X,
117
, pp.
281
289
.
27.
Hwang
,
J. J.
, and
Lu
,
C. C.
, 2001, “
Lateral-Flow Effect on Endwall Heat Transfer and Pressure Drop in a Pin Fin Trapezoidal Duct With Various Pin Shapes
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
133
139
.
28.
Wright
,
L. M.
,
Fu
,
W. L.
, and
Han
,
J. C.
, 2004, “
Thermal Performance of Angled, V-Shaped, and W-Shaped Rib Turbulators in Rotating Rectangular Cooling Channels (AR=4:1)
,” ASME Paper No. GT 2004-54073.
29.
Willet
,
F. T.
, and
Bergles
,
A. E.
, 2002, “
Heat Transfer in Rotating Narrow Rectangular Pin-Fin Ducts
,”
Exp. Therm. Fluid Sci.
0894-1777,
25
, pp.
573
582
.
30.
Wright
,
L. M.
,
Lee
,
E.
, and
Han
,
J. C.
, 2004, “
Effect of Rotation on Heat Transfer in Rectangular Channels With Pin-Fins
,”
J. Thermophys. Heat Transfer
0887-8722,
18
, pp.
263
272
.
31.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainty in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
You do not currently have access to this content.