The oscillatory behaviors of methane and hydrogen oxidation in a perfectly stirred reactor (PSR) are examined. The work explores the parameter spaces in which oscillatory combustion and ignition take place using heat transfer coefficient, mean residence time, and reactor wall temperatures as variables. An analytic model was developed using an eigenvalue analysis to determine the nature and stability of these oscillations. Both numerical and analytical studies suggest that combustion oscillations occur at the extinction turning point of the hysteresis curve or the boundary of combustion extinction. These oscillations are found to be driven by the coupling of the heat released from the reaction and the heat dissipation through the reactor wall, and these are unstable, which perhaps explains why they were never or rarely observed experimentally. In the case of hydrogen oxidation, we demonstrate the existence of two additional types of oscillations, namely, hybrid oscillation and oscillatory ignition, both of which occur at or near the turning point of ignition. These oscillations are stable and driven by detailed reaction kinetics. The numerical results for hydrogen oxidation were compared with previous experiments and found to be within 5K of the observed wall temperature where oscillations were observed.

1.
Gray
,
P.
,
Griffiths
,
J. F.
, and
Scott
,
S. K.
, 1989,
Proc. R. Soc. London, Ser. A
1364-5021,
394
, pp.
243
258
.
2.
Chinnick
,
K.
,
Gibson
,
C.
, and
Griffiths
,
J. F.
, 1986,
Proc. R. Soc. London, Ser. A
1364-5021,
405
, pp.
117
128
.
3.
Baulch
,
D. L.
,
Griffiths
,
J. F.
,
Pappin
,
A. J.
, and
Sykes
,
A. F.
, 1988,
Combust. Flame
0010-2180,
73
, pp.
45
54
.
4.
Baulch
,
D. L. K.
,
Griffiths
,
J. F.
,
Kordylewski
,
W.
, and
Richter
,
R.
, 1991,
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
337
, pp.
199
210
.
5.
Lewis
,
B.
, and
von Elbe
,
G.
, 1987,
Combustion, Flames and Explosions of Gases
, 3rd ed.,
Academic
,
Orlando
.
6.
Chinnick
,
K.
,
Gibson
,
C.
, and
Griffiths
,
J. F.
, 1986,
Proc. R. Soc. London, Ser. A
1364-5021,
405
, pp.
129
142
.
7.
Johnson
,
B. R.
,
Scott
,
S. K.
, and
Tomlin
,
A. S.
, 1991,
J. Chem. Soc., Faraday Trans.
0956-5000,
87
, pp.
2539
2548
.
8.
Vilyunov
,
V. N.
, and
Ryabinin
,
V. K.
, 1991,
Combust., Explos. Shock Waves
0010-5082,
27
, pp.
203
211
.
9.
Kalamatianos
,
S.
, and
Vlachos
,
D. G.
, 1995,
Combust. Sci. Technol.
0010-2202,
109
, pp.
347
371
.
10.
Olsen
,
R. J.
, and
Vlachos
,
D. G.
, 1999,
J. Phys. Chem.
0022-3654,
103
, pp.
7990
7999
.
11.
Gummalla
,
M.
, and
Vlachos
,
D. G.
, 2000,
Phys. Fluids
1070-6631,
12
, pp.
252
255
.
12.
Baulch
,
D. L.
,
Griffiths
,
J. F.
, and
Richter
,
R.
, 1991,
Chem. Eng. Sci.
0009-2509,
46
, pp.
2315
2322
.
13.
Griffiths
,
J. F.
, and
Inomata
,
T.
, 1992,
J. Chem. Soc., Faraday Trans.
0956-5000,
88
, pp.
3153
3158
.
14.
Skrumeda
,
L. L.
, and
Ross
,
J.
, 1995,
J. Phys. Chem.
0022-3654,
99
, pp.
12835
12845
.
15.
Glarborg
,
P.
,
Kee
,
R. J.
,
Grcar
,
J. F.
, and
Miller
,
J. A.
, 1992, “
PSR: A Fortran Program for Modeling Well-Stirred Reactors
,”
Sandia National Laboratories
, Sandia Report No. 1.
16.
Grcar
,
J. F.
, 1992, “
Two Two-Point Problem for Boundary Value Problems
,”
Sandia National Laboratories
, Sandia Report No. SAND91-8230.
17.
Kim
,
T. J.
,
Yetter
,
R. A.
, and
Dryer
,
F. L.
, 1994,
Sym. (Int.) Combust., [Proc.]
0082-0784,
25
, pp.
759
766
.
18.
Davis
,
S. G.
,
Joshi
,
A. V.
,
Wang
,
H.
, and
Egolfopoulos
,
F.
, 2004,
Proc. Combust. Inst.
1540-7489,
30
, pp.
1283
1292
.
19.
Li
,
J.
,
Zhao
,
Z. W.
,
Kazakov
,
A.
, and
Dryer
,
F. L.
, 2004,
Int. J. Chem. Kinet.
0538-8066,
36
, pp.
566
575
.
20.
O’Conaire
,
M.
,
Curran
,
H. J.
,
Simmie
,
J. M.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
, 2004,
Int. J. Chem. Kinet.
0538-8066,
36
, pp.
603
622
.
21.
Saxena
,
F.
, and
Williams
,
F.
, 2005,
Combust. Flame
0010-2180,
145
, pp.
316
323
.
22.
Frenklach
,
M.
,
Wang
,
H.
,
Goldenberg
,
M.
,
Smith
,
G. P.
,
Golden
,
D. M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Gardiner
,
W. C.
, and
Lissianski
,
V.
, 1995, “
GRI-Mech: An Optimized Detailed Chemical Reaction Mechanism for Methane Combustion
,” GRI Technical Report No. GRI-95/0058.
23.
Wang
,
H.
, and
Frenklach
,
M.
, 1997,
Combust. Flame
0010-2180,
110
, pp.
173
221
.
24.
Sun
,
C. J.
,
Sung
,
C. J.
,
Wang
,
H.
, and
Law
,
C. K.
, 1996,
Combust. Flame
0010-2180,
107
, pp.
321
335
.
25.
Gray
,
P.
, and
Griffiths
,
J.
, 1989,
Int. J. Wavelets, Multiresolut. Inf. Process.
0219-6913,
78
, pp.
29
40
.
26.
William
,
F. A.
, 1985,
Combustion Theory
, 2nd ed.,
Perseus
,
Reading, MA
.
27.
Strogatz
,
S. H.
, 1994,
Nonlinear Dynamics and Chaos
,
Addision-Wesley
,
Reading, MA
, pp.
129
140
.
28.
Denbigh
,
K. G.
, and
Turner
,
J. C. R.
, 1984,
Chemical Reactor Theory
,
Cambridge University Press
,
New York
, pp.
64
80
.
You do not currently have access to this content.