Energy separation is a spontaneous redistribution of total energy (enthalpy) in a fluid without external work or heat flow, resulting in some portion of fluid having higher total energy (enthalpy) and another portion having lower energy (enthalpy) than the surrounding fluid. The present study investigates the mechanism of energy separation in the vortex field behind an adiabatic circular cylinder. Time-averaged velocity and temperature measurements are carried out in the wake of a cylinder in a cross flow of air. The measurements are performed at downstream locations of three, five, seven, and ten diameters, for a Reynolds number, based on upstream velocity and cylinder diameter, of 9.2×104 and freestream Mach number of 0.22. The measured velocity and recovery temperature data are expressed in nondimensional form as an energy separation factor. The distribution of energy separation factor indicates that the main cause of energy separation is the periodic vortex flow in the wake. The vortex strength and the separation effect decrease as the flow moves downstream. However, energy separation is observed even ten diameters downstream.

1.
Ranque
,
G.
, 1933, “
Experiences sur la d’etente giratoire avec productions simultan\ees d’un echappement d’air chaud et d’un echappement d’air froid
,”
J. Phys. Radium
0368-3842,
4
, pp.
112
114
.
2.
Eckert
,
E. R. G.
, 1986, “
Energy Separation in Fluid Streams
,”
Int. Commun. Heat Mass Transfer
0735-1933,
13
, pp.
127
143
.
3.
Eckert
,
E. R. G.
, and
Weise
,
W.
, 1940, “
Messungn der Temperaturverteilung auf der Oberflache Schnell Angestromter umbeheizter korper
,”
Jahrbuch 1940 der Deutschen Luftahrtforschung
,
2
, pp.
25
31
.
4.
Eckert
,
E. R. G.
, and
Drewiz
,
O.
, 1941, “
Die Berechnung des Temperaturfeldes in der laminaren Grenzschicht schnell angestromter, unbeheizter Korper
,”
Luftfahrtforschung
0368-7643,
19
, pp.
189
196
.
5.
Goldstein
,
R. J.
,
Behbahani
,
A. I.
, and
Heppelmann
,
K. K.
, 1986, “
Streamwise Distribution of the Recovery Factor and the Local Heat Transfer Coefficient to an Impinging Circular Air Jet
,”
Int. J. Heat Mass Transfer
0017-9310,
29
(
8
), pp.
1227
1235
.
6.
Goldstein
,
R. J.
,
Sobolik
,
K. A.
, and
Seol
,
W. S.
, 1990, “
Effect of Entrainment on the Heat Transfer to a Heated Circular Air Jet Impinging on a Flat Surface
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
608
611
.
7.
Fox
,
M.
,
Kurosaka
,
M.
, and
Hirano
,
K.
, 1990, “
Total Temperature Separation in Jets
,” AIAA 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference.
8.
Han
,
B.
, and
Goldstein
,
R. J.
, 2003, “
Instantaneous Energy Separation in a Free Jet. Part I. Flow Measurement and Visualization
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
21
), pp.
3975
3981
.
9.
Han
,
B.
, and
Goldstein
,
R. J.
, 2003, “
Instantaneous Energy Separation in a Free Jet. Part II. Total Temperature Measurement
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
21
), pp.
3983
3990
.
10.
Seol
,
W. S.
, and
Goldstein
,
R. J.
, 1997, “
Energy Separation in a Jet Flow
,”
ASME J. Fluids Eng.
0098-2202,
119
(
1
), pp.
74
82
.
11.
Van Oudheusden
,
B. W.
, 2005, “
Energy Separation in Steady Separated Wake Flow
,”
ASME J. Fluids Eng.
0098-2202,
127
(
3
), pp.
611
614
.
12.
Goldstein
,
R. J.
, and
He
,
B.
, 2001, “
Energy Separation and Acoustic Interaction in Flow Across a Circular Cylinder
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
682
687
.
13.
Eckert
,
E. R. G.
, 1987, “
Cross Transport of Energy in Fluid Streams
,”
Waerme- Stoffuebertrag.
0042-9929,
21
, pp.
73
81
.
14.
Kurosaka
,
M.
,
Gertz
,
J. B.
,
Graham
,
J. E.
,
Goodman
,
J. R.
,
Sundaram
,
P.
,
Ringer
,
W. C.
,
Kuroda
,
H.
, and
Hankey
,
W. L.
, 1987, “
Energy Separation in a Vortex Street
,”
J. Fluid Mech.
0022-1120,
178
, pp.
1
29
.
15.
Zdravkovich
,
M. M.
, 1997,
Flow Around Circular Cylinders: A Comprehensive Guide Through Flow Phenomena, Experiments, Applications, Mathematical Models and Computer Simulations
,
Oxford Science
, New York.
16.
Friehe
,
C. A.
, 1980, “
Vortex Shedding From Cylinders at Low Reynolds Numbers
,”
J. Fluid Mech.
0022-1120,
100
, pp.
237
241
.
17.
Cantwell
,
B.
, and
Coles
,
D.
, 1983, “
An Experimental Study of Entrainment and Transport in the Turbulent Near Wake of a Circular Cylinder
,”
J. Fluid Mech.
0022-1120,
136
, pp.
321
374
.
18.
Ericsson
,
L. E.
, and
Reding
,
J. P.
, 1979, “
Criterion for Vortex Periodicity in Cylinder Wakes
,”
AIAA J.
0001-1452,
17
(
9
), pp.
1012
1013
.
19.
Braza
,
M.
,
Chassaing
,
P.
, and
Minh
,
H. H.
, 1990, “
Prediction of Large-Scale Features in the Wake of a Circular Cylinder
,”
Phys. Fluids A
0899-8213,
2
(
8
), pp.
1461
1471
.
20.
Triantafyllou
,
G. S.
,
Triantafyllou
,
M. S.
, and
Chryssostomidis
,
C.
, 1986, “
On the Formation of Vortex Streets Behind Stationary Cylinders
,”
J. Fluid Mech.
0022-1120,
170
, pp.
461
477
.
21.
Bearman
,
P. W.
, 1969, “
On Vortex Shedding From Circular Cylinder in the Critical Reynolds Number Regime
,”
J. Fluid Mech.
0022-1120,
37
, pp.
577
585
.
22.
Roshko
,
A.
, 1960, “
Experiments on the Flow Past a Circular Cylinder at Very High Reynolds Number
,”
J. Fluid Mech.
0022-1120,
10
, pp.
345
356
.
23.
Nakagawa
,
T.
, 1986, “
A Formation Mechanism of Alternating Vortices Behind a Circular Cylinder at High Reynolds Number
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
25
, pp.
113
129
.
24.
Nakagawa
,
T.
, 1987, “
Vortex Shedding Behind a Square Cylinder in Transonic Flows
,”
J. Fluid Mech.
0022-1120,
178
, pp.
303
323
.
25.
Ryan
,
L. F.
, 1951, “
Experiments in Aerodynamic Cooling
,” Ph.D. thesis, ETH, Zurich.
26.
Thomann
,
H.
, 1959, Technical Report No. FFA 84.
27.
Eber
,
G.
, 1941, “
Experimental Research on Friction Temperature and Heat Transfer for Simple Bodies at Supersonic Velocities
,” German Archive Technical Report No. 66/57.
28.
Ng
,
W. F.
,
Chakroun
,
W. M.
, and
Kurosaka
,
M.
, 1990, “
Time Resolved Measurements of Total Temperature and Pressure in the Vortex Street Behind a Cylinder
,”
Phys. Fluids A
0899-8213,
2
(
6
), pp.
971
978
.
29.
Terala
,
P.
, 2000, “
Study of Energy Separation in the Wake of a Cylinder for High Speed Flow
,” M.S. thesis, University of Minnesota, Minneapolis.
30.
Hottel
,
H. C.
, and
Kalitinsky
,
A.
, 1945, “
Temperature Measurements in High Velocity Air Streams
,”
ASME J. Appl. Mech.
0021-8936,
67
, pp.
A25
A32
.
31.
Moffat
,
R. J.
, 1962, “
Gas Temperature Measurement
,”
Temperature: its Measurement and Control in Science and Industry
,
Reinhold
,
New York
, pp.
553
571
.
You do not currently have access to this content.