A photoelectrochemical model for hydrogen production from water electrolysis using proton exchange membrane is proposed based on Butler-Volmer kinetics for electrodes and transport resistance in the polymer electrolyte. An equivalent electrical circuit analogy is proposed for the sequential kinetic and transport resistances. The model provides a relation between the applied terminal voltage of electrolysis cell and the current density in terms of Nernst potential, exchange current densities, and conductivity of polymer electrolyte. Effects of temperature on the voltage, power supply, and hydrogen production are examined with the developed model. Increasing temperature will reduce the required power supply and increase the hydrogen production. An increase of about 11% is achieved by varying the temperature from 30°Cto80°C. The required power supply decreases as the illumination intensity becomes greater. The power supply due to the cathode overpotential does not change too much with the illumination intensity. Effects of the illumination intensity can be observed as the current density is relatively small for the examined illumination intensities.

1.
Adamson
,
K.
, 2004, “
Hydrogen From Renewable Resources—The Hundred Year Commitment
,”
Energy Policy
0301-4215,
32
(
10
), pp.
1231
1242
.
2.
Ogden
,
J. M.
, 2002, “
Hydrogen: The Fuel of the Future?
Phys. Today
0031-9228,
55
(
4
), pp.
69
75
.
3.
Barbir
,
F.
, 2005, “
PEM Electrolysis for Production of Hydrogen From Renewable Energy Sources
,”
Sol. Energy
0038-092X,
78
(
5
), pp.
661
669
.
4.
Nozik
,
A. J.
, 1978, “
Photoelectrochemistry: Applications to Solar Energy Conversion
,”
Annu. Rev. Phys. Chem.
0066-426X,
29
, pp.
189
222
.
5.
Grätzel
,
M.
, 2001, “
Photoelectrochemical Cells
,”
Nature (London)
0028-0836,
414
(
6861
), pp.
338
344
.
6.
Grätzel
,
M.
, 2005, “
Mesoscopic Solar Cells for Electricity and Hydrogen Production From Sunlight
,”
Chem. Lett.
0366-7022,
34
(
1
), pp.
8
13
.
7.
Cheddie
,
D.
, and
Munroe
,
N.
, 2005, “
Review and Comparison of Approaches to Proton Exchange Membrane Fuel Cell Modeling
,”
J. Power Sources
0378-7753,
147
(
1–2
), pp.
72
84
.
8.
Scott
,
K.
,
Taama
,
W.
, and
Cruickshank
,
J.
, 1997, “
Performance and Modeling of a Direct Methanol Solid Polymer Electrolyte Fuel Cell
,”
J. Power Sources
0378-7753,
65
(
1–2
), pp.
159
171
.
9.
Nguyen
,
T. V.
, and
White
,
R. E.
, 1993, “
A Water and Heat Management Model for Proton-Exchange-Membrane Fuel-Cells
,”
J. Electrochem. Soc.
0013-4651,
140
(
8
), pp.
2178
2186
.
10.
Larmine
,
J.
, and
Dicks
,
A.
, 2000,
Fuel Cell Systems Explained
,
Wiley
,
New York
.
11.
Onda
,
K.
,
Murakami
,
T.
,
Hokosaka
,
T.
,
Kobayashi
,
M.
,
Notu
,
R.
, and
Ito
,
K.
, 2002, “
Performance Analysis of Polymer-Electrolyte Water Electrolysis Cell at a Small-Unit Test Cell and Performance Prediction of Large Stacked Cell
,”
J. Electrochem. Soc.
0013-4651,
149
(
8
), pp.
A1069
A1078
.
12.
Choi
,
P.
,
Bessarabov
,
D. G.
, and
Datta
,
R.
, 2004, “
A Simple Model for Solid Polymer Electrolyte (SPE) Water Electrolysis
,”
Solid State Ionics
0167-2738,
175
(
1–4
), pp.
535
539
.
13.
Millet
,
P.
, 1994, “
Water Electrolysis Using EME Technology—Electric-Potential Distribution Inside a Nafion Membrane During Electrolysis
,”
Electrochim. Acta
0013-4686,
39
(
17
), pp.
2501
2506
.
14.
Ioroi
,
T.
,
Yasuda
,
K.
,
Siroma
,
Z.
,
Fujiwara
,
N.
, and
Miyazaki
,
Y.
, 2002, “
Thin Film Electrocatalyst Layer for Unitized Regenerative Polymer Electrolyte Fuel Cells
,”
J. Power Sources
0378-7753,
112
(
2
), pp.
583
587
.
15.
Bard
,
A. J.
, and
Faulkner
,
L. R.
, 2001,
Electrochemical Methods: Fundamentals and Applications
,
2nd ed.
,
Wiley
,
New York
.
16.
Wilson
,
H. A.
, 1959,
Modern Physics
,
4th ed.
,
Blackie
,
London
, Chap. 4.
17.
Bockris
,
J. O’M.
, 1954,
Modern Aspects of Electrochemistry
, Vol.
1
,
J. O’M.
Bockris
and
B. D.
Conway
, eds.,
Butterworth
,
London
, Chap. 4.
18.
Bockris
,
J. O’M.
, and
Srinivasan
,
S.
, 1969,
Fuel Cells: Their Electrochemistry
,
McGraw-Hill
,
New York
.
19.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1992, “
Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
139
(
9
), pp.
2477
2491
.
20.
Beattie
,
P. D.
,
Basura
,
V. I.
, and
Holdcroft
,
S.
, 1999, “
Temperature and Pressure Dependence of O2 Reduction at Pt ∣ Nafion® 117 and Pt ∣ BAM® 407 Interfaces
,”
J. Electroanal. Chem.
0022-0728,
468
(
2
), pp.
180
192
.
You do not currently have access to this content.