Nanofluids are being studied for their potential to enhance heat transfer, which could have a significant impact on energy generation and storage systems. However, only limited experimental data on metal and metal-oxide based nanofluids, showing enhancement of the thermal conductivity, are currently available. Moreover, the majority of the data currently available have been obtained using transient methods. Some controversy exists as to the validity of the measured enhancement and the possibility that this enhancement may be an artifact of the experimental methodology. In the current investigation, Al2O3∕water nanofluids with normal diameters of 47nm at different volume fractions (0.5%, 2%, 4%, and 6%) have been investigated, using two different methodologies: a transient hot-wire method and a steady-state cut-bar method. The comparison of the measured data obtained using these two different experimental systems at room temperature was conducted and the experimental data at higher temperatures were obtained with steady-state cut-bar method and compared with previously reported data obtained using a transient hot-wire method. The arguments that the methodology is the cause of the observed enhancement of nanofluids effective thermal conductivity are evaluated and resolved. It is clear from the results that at room temperature, both the steady-state cut-bar and transient hot-wire methods result in nearly identical values for the effective thermal conductivity of the nanofluids tested, while at higher temperatures, the onset of natural convection results in larger measured effective thermal conductivities for the hot-wire method than those obtained using the steady-state cut-bar method. The experimental data at room temperature were also compared with previously reported data at room temperature and current available theoretical models, and the deviations of experimental data from the predicted values are presented and discussed.

1.
Nagasaka
,
Y.
, and
Nagashima
,
A.
, 1981, “
Absolute Measurement of the Thermal Conductivity of Electrically Conducting Liquids by the Transient Hot-Wire Method
,”
J. Phys. E
0022-3735,
4
, pp.
1435
1439
.
2.
Choi
,
S. U. S.
, 1995, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
,
D. A.
Siginer
and
H. P.
Wang
, eds.
ASME
,
New York
.
3.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Thompson
,
L. J.
, and
Lee
,
S.
, 1997, “
Enhanced Thermal Conductivity Through the Development of Nanofluids
,”
Nanophase and Nanocomposite Material II
,
S.
Komarneni
,
J. C.
Parker
, and
H. J.
Wollenberger
, eds.,
Mater. Res. Soc. Symp. Proc.
,
Warrendale, PA
, 457, pp.
9
10
.
4.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
, 1999, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
280
289
.
5.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
78
(
6
), pp.
718
720
.
6.
Xuan
,
Y.
, and
Li
,
Q.
, 2000, “
Heat Transfer Enhancement of Nanofluids
,”
Russ. J. Eng. Thermophys.
1051-8053,
20
(
4
), pp.
465
470
(in Chinese).
7.
Xuan
,
Y.
, and
Li
,
Q.
, 2000, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
0142-727X,
21
, pp.
58
64
.
8.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
,
Liu
,
Y.
, and
Ai
,
F.
, 2002, “
Dependence of the Thermal Conductivity of Nanoparticle-Fluid Mixture on the Base Fluid
,”
J. Mater. Sci. Lett.
0261-8028,
21
, pp.
1469
1471
.
9.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
,
Liu
,
Y.
, and
Ai
,
F.
, 2002, “
Thermal Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles
,”
J. Appl. Phys.
0021-8979,
91
(
7
), pp.
4568
4572
.
10.
Wang
,
X.
,
Xu
,
X.
, and
Choi
,
S. U.
, 1999, “
Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
J. Thermophys. Heat Transfer
0887-8722,
13
(
4
), pp.
474
480
.
11.
Vadasz
,
J. J.
,
Govender
,
S.
, and
Vadasz
,
P.
, 2005, “
Heat Transfer Enhancement in Nano-Fluids Suspensions: Possible Mechanisms and Explanations
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
13
), pp.
2673
2683
.
12.
Peterson
,
G. P.
, and
Fletcher
,
L. S.
, 1987, “
Effective Thermal Conductivity of Sintered Heat Pipe Wicks
,”
Int. J. Thermophys.
0195-928X,
1
(
4
), pp.
343
347
.
13.
Peterson
,
G. P.
, and
Fletcher
,
L. S.
, 1988, “
Thermal Contact Conductance of Packed Beds in Contact With a Flat Surface
,”
ASME J. Heat Transfer
0022-1481,
110
(
1
), pp.
38
41
.
14.
Peterson
,
G. P.
, and
Fletcher
,
L. S.
, 1989, “
On the Thermal Conductivity of Dispersed Ceramics
,”
ASME J. Heat Transfer
0022-1481,
111
, pp.
824
829
.
15.
Duncan
,
A. B.
,
Peterson
,
G. P.
, and
Fletcher
,
L. S.
, 1989, “
Effective Thermal Conductivity Within Packed Beds of Spherical Particles
,”
ASME J. Heat Transfer
0022-1481,
111
(
4
), pp.
830
836
.
16.
Miller
,
R. G.
, and
Fletcher
,
L. S.
, 1974, “
A Facility for the Measurement of Thermal Contact Conductance
,”
Proceedings of the Tenth Southeastern Seminar on Thermal Sciences
,
New Orleans, LA
, pp.
263
285
.
17.
Kim
,
B. H.
, and
Peterson
,
G. P.
, 2007, “
Effect of Morphology of Carbon Nanotubes on Thermal Conductivity Enhancement of Aqueous Nanofluids
,”
J. Thermophys. Heat Transfer
0887-8722,
21
, pp.
451
459
.
18.
Li
,
C. H.
, and
Peterson
,
G. P.
, 2006, “
Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions
,”
J. Appl. Phys.
0021-8979,
99
, p.
084314
.
19.
Peterson
,
G. P.
, and
Li
,
H. C.
, 2005,
Advances in Heat Transfer
, Vol.
39
,
J. P.
Hartnett
and
T. F.
Irvine
, eds.,
Pergamon
,
New York
, pp.
261
392
.
20.
Miller
,
R. G.
, and
Fletcher
,
L. S.
, 1974, “
A Facility for the Measurement of Thermal Contact Conductance
,”
Proceedings of the Tenth Southeastern Seminar on Thermal Sciences
,
New Orleans, LA
, pp.
263
285
.
21.
Yaws
,
C. L.
, 1999,
Chemical Property Handbook, Physical, Thermodynamic, Environmental, Transport, Safety, and Health Related Properties for Organic and Inorganic Chemicals
,
1st ed.
,
McGraw-Hill
,
New York
, p.
1311
.
22.
Li
,
H. C.
, and
Peterson
,
G. P.
, 2007, “
Size Effect on the Effective Thermal Conductivity of Al2O3∕Di Water Nanofluids
,”
J. Appl. Phys.
0021-8979,
101
, p.
044312
.
23.
Williams
,
W. C.
, 2006, “
Experimental and Theoretical Investigation of Transport Phenomena in Nanoparticle Colloids (Nanofluids)
,” Doctoral dissertation, the Department of Nuclear Science and Engineering, Massachusetts Institute of Technology.
24.
Rusconi
,
R.
,
Williams
,
W. C.
, Buongiorno, J.
Piazza
,
R.
, and
Hu
,
L. W.
, 2007, “
Numerical Analysis of Convective Instabilities in a Transient Short-Hot-Wire Setup for Measurement of Liquid Thermal Conductivity
,”
Int. J. Theor. Phys.
0020-7748, in press.
25.
Tohver
,
V.
,
Chan
,
A.
,
Sakurada
,
O.
, and
Lewis
,
J. A.
, 2001, “
Nanoparticle Engineering of Complex Fluid Behavior
,”
Langmuir
0743-7463,
17
, pp.
8414
8421
.
26.
Tohver
,
V.
,
Smay
,
J. E.
,
Braem
,
A.
,
Braun
,
P. V.
, and
Lewis
,
J. A.
, 2001, “
Nanoparticle Halos: A New Colloid Stabilization Mechanism
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
98
, pp.
8950
8954
.
27.
Maxwell
,
J. C.
, 1892,
A Treatise on Electricity and Magnetism
, Vol.
I
,
3rd ed.
,
Oxford University Press
,
New York
.
28.
Jeffrey
,
D. J.
, 1973,
Proc. R. Soc. London, Ser. A
1364-5021,
335
, pp.
355
367
.
29.
Davis
,
R. H.
, 1986, “
The Effective Thermal Conductivity of a Composite Material With Spherical Inclusions
,”
Int. J. Thermophys.
0195-928X,
7
, pp.
609
620
.
30.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
, 1962, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
0196-4313,
1
(
3
), pp.
187
191
.
31.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2004, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
84
, pp.
4316
4318
.
32.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
, 2005, “
Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids)
,”
Phys. Rev. Lett.
0031-9007,
94
, p.
025901
.
33.
Acrivos
,
A.
, and
Taylor
,
T. D.
, 1962, “
Heat and Mass Transfer From Single Spheres in Stokes Flow
,”
Phys. Fluids
0031-9171,
5
, pp.
387
394
.
34.
Kumar
,
D. H.
,
Patel
,
H. E.
,
Kumar
,
V. R. R.
,
Sundararajan
,
T.
,
Pradeep
,
T.
, and
Das
,
S. K.
, 2004, “
Model for Heat Conduction in Nanofluids
,”
Phys. Rev. Lett.
0031-9007,
93
, p.
144301
.
35.
Chon
,
C. H.
,
Kim
,
K. D.
,
Lee
,
S. P.
, and
Choi
,
S. U. S.
, 2005, “
Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
153107
.
You do not currently have access to this content.