Microscale truss architectures provide high mechanical strength, light weight, and open porosity in polymer sheets. Liquid evaporation and transport of the resulting vapor through truss voids cool nearby surfaces. Thus, microtruss materials can simultaneously prevent mechanical and thermal damage. Assessment of promise requires quantitative understanding of vapor transport through microtruss pores for realistic heat loads and latent heat carriers. Pore size may complicate exegesis owing to vapor rarefaction or surface interactions. This paper quantifies the nonboiling evaporative cooling of a flat surface by water vapor transport through two different hydrophobic polymer membranes, 112119μm (or 113123μm) thick, with microtruss-like architectures, i.e., straight-through pores of average diameter of 1.01.4μm (or 12.614.2μm) and average overall porosity of 7.6% (or 9.9%). The surface, heated at 1350±20Wtm2 to mimic human thermal load in a desert (daytime solar plus metabolic), was the bottom of a 3.1cm inside diameter, 24.9cm3 cylindrical aluminum chamber capped by the membrane. Steady-state rates of water vapor transport through the membrane pores to ambient were measured by continuously weighing the evaporation chamber. The water vapor concentration at the membrane exit was maintained near zero by a cross flow of dry nitrogen (velocity=2.8ms). Each truss material enabled 1314°C evaporative cooling of the surface, roughly 40% of the maximum evaporative cooling attainable, i.e., with an uncapped chamber. Intrinsic pore diffusion coefficients for dilute water vapor (<10.4mole%) in air (P total 112,000Pa) were deduced from the measured vapor fluxes by mathematically disaggregating the substantial mass transfer resistances of the boundary layers (50%) and correcting for radial variations in upstream water vapor concentration. The diffusion coefficients for the 1.01.4μm pores (Knudsen number 0.1) agree with literature for the water vapor-air mutual diffusion coefficient to within ±20%, but for the nominally 12.614.2μm pores (Kn 0.01), the diffusion coefficient values were smaller, possibly because considerable pore area resides in noncircular, i.e., narrow, wedge-shaped cross sections that impede diffusion owing to enhanced rarefaction. The present data, parameters, and mathematical models support the design and analysis of microtruss materials for thermal or simultaneous thermal-and-mechanical protection of microelectromechanical systems, nanoscale components, humans, and other macrosystems.

1.
Jang
,
J.-H.
,
Ullal
,
C. K.
,
Choi
,
T. Y.
,
LeMieux
,
M. C.
,
Tsukruk
,
V. V.
, and
Thomas
,
E. L.
, 2006, “
3D Polymer Microframes That Exploit Length-Scale-Dependent Mechanical Behavior
,”
Adv. Mater. (Weinheim, Ger.)
0935-9648,
18
(
16
), pp.
2123
2127
.
2.
Choi
,
T.
,
Jang
,
J.-H.
,
Ullal
,
C. K.
,
LeMieux
,
M. C.
,
Tsukruk
,
V. V.
, and
Thomas
,
E. L.
, 2006, “
The Elastic Properties and Plastic Behavior of Two-Dimensional Polymer Structures Fabricated by Laser Interference Lithography
,”
Adv. Funct. Mater.
1616-301X,
16
, pp.
1324
1330
.
3.
Karniadakis
,
G.
, and
Beskök
,
A.
, 2002,
Micro Flows: Fundamentals and Simulation
,
Springer
,
New York
.
4.
de Gennes
,
P.
,
Brochard-Wyart
,
F.
, and
Quere
,
D.
, 2004,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
,
Springer
,
New York
.
5.
Cercignani
,
C.
, 2000,
Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations
,
Cambridge University Press
,
New York
.
6.
Kärger
,
J.
, and
Ruthven
,
D. M.
, 1992,
Diffusion in Zeolites and Other Microporous Solids
,
Wiley
,
New York
.
7.
Cussler
,
E. L.
, 1997,
Diffusion: Mass Transfer in Fluid Systems
, 2nd ed.,
Cambridge University Press
,
New York
.
8.
McCullough
,
E. A.
,
Kwon
,
M.
, and
Shim
,
H.
, 2003, “
A Comparison of Standard Methods for Measuring Water Vapour Permeability of Fabrics
,”
Meas. Sci. Technol.
0957-0233,
14
(
8
), pp.
1402
1408
.
9.
Mantle
,
M. D.
,
Reis
,
N. C.
,
Griffiths
,
R. F.
, and
Gladden
,
L. F.
, 2003, “
MRI Studies of the Evaporation of a Single Liquid Droplet From Porous Surfaces
,”
Magn. Reson. Imaging
0730-725X,
21
(
3–4
), pp.
293
297
.
10.
Manz
,
B.
,
Chow
,
P. S.
, and
Gladden
,
L. F.
, 1999, “
Echo-Planar Imaging of Porous Media With Spatial Resolution Below 100μm
,”
J. Magn. Reson.
1090-7807,
136
(
2
), pp.
226
230
.
11.
Findley
,
M. E.
,
Tanna
,
V. V.
,
Rao
,
Y. B.
, and
Yeh
,
C. L.
, 1969, “
Mass and Heat Transfer Relations in Evaporation through Porous Membranes
,”
AIChE J.
0001-1541,
15
(
4
), pp.
483
489
.
12.
Pietrass
,
T.
, 2006, “
Carbon-Based Membranes
,”
MRS Bull.
0883-7694,
31
(
10
), pp.
765
769
.
13.
Sholl
,
D. S.
, and
Ma
,
Y. H.
, 2006, “
Dense Metal Membranes for the Production of High-Purity Hydrogen
,”
MRS Bull.
0883-7694,
31
(
10
), pp.
770
773
.
14.
Perry
,
J. D.
,
Nagai
,
K.
, and
Koros
,
W. J.
, 2006, “
Polymer Membranes for Hydrogen Separations
,”
MRS Bull.
0883-7694,
31
(
10
), pp.
745
749
.
15.
Ghali
,
K.
,
Ghaddar
,
N.
, and
Jones
,
B.
, 2002, “
Empirical Evaluation of Convective Heat and Moisture Transport Coefficients in Porous Cotton Medium
,”
ASME Trans. J. Heat Transfer
0022-1481,
124
(
3
), pp.
530
537
.
16.
Johnson
,
D. W.
,
Yavuzturk
,
C.
, and
Pruis
,
J.
, 2003, “
Analysis of Heat and Mass Transfer Phenomena in Hollow Fiber Membranes Used for Evaporative Cooling
,”
J. Membr. Sci.
0376-7388,
227
(
1–2
), pp.
159
171
.
17.
Gibson
,
P.
,
Schreuder-Gibson
,
H.
, and
Rivin
,
D.
, 2001, “
Transport Properties of Porous Membranes Based on Electrospun Nanofibers
,”
Colloids Surf., A
0927-7757,
187
, pp.
469
481
.
18.
Chen
,
G.
, 2005,
Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons
,
Oxford University Press
,
New York
.
19.
Pollard
,
W. G.
, and
Present
,
R. D.
, 1948, “
On Gaseous Self-Diffusion in Long Capillary Tubes
,”
Phys. Rev.
0031-899X,
73
(
7
), pp.
762
774
.
20.
Present
,
R. D.
, 1958,
Kinetic Theory of Gases
,
McGraw-Hill
,
New York
.
21.
Churaev
,
N. V.
, and
Galwey
,
A. K.
, 2000,
Liquid and Vapor Flows in Porous Bodies: Surface Phenomena
,
Gordon and Breach
,
Amsterdam
.
22.
Luo
,
G.
,
Malkova
,
S.
,
Yoon
,
J.
,
Schultz
,
D. G.
,
Lin
,
B.
,
Meron
,
M.
,
Benjamin
,
I.
,
Vanysek
,
P.
, and
Schlossman
,
M. L.
, 2006, “
Ion Distributions Near a Liquid-Liquid Interface
,”
Science
0036-8075,
311
(
5758
), pp.
216
218
.
23.
Collier
,
J. G.
, and
Thome
,
J. R.
, 1994,
Convective Boiling and Condensation
, 3rd ed.,
Oxford University Press
,
New York
.
24.
Lock
,
G. S. H.
, 1994,
Latent Heat Transfer: An Introduction to Fundamentals
,
Oxford University Press
,
New York
.
25.
Sholl
,
D. S.
, 2006, “
Understanding Macroscopic Diffusion of Adsorbed Molecules in Crystalline Nanoporous Materials Via Atomistic Simulations
,”
Acc. Chem. Res.
0001-4842,
39
(
6
), pp.
403
411
.
26.
Holt
,
J. K.
,
Park
,
H. G.
,
Wang
,
Y.
,
Stadermann
,
M.
,
Artyukhin
,
A. B.
,
Grigoropoulos
,
C. P.
,
Noy
,
A.
, and
Bakajin
,
O.
, 2006, “
Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes
,”
Science
0036-8075,
312
(
5776
), pp.
1034
1037
.
27.
Eijkel
,
J. C. T.
,
Dan
,
B.
,
Reemeijer
,
H. W.
,
Hermes
,
D. C.
,
Bomer
,
J. G.
, and
van den Berg
,
A.
, 2005, “
Strongly Accelerated and Humidity-Independent Drying of Nanochannels Induced by Sharp Corners
,”
Phys. Rev. Lett.
0031-9007,
95
(
25
), p.
256107
.
28.
Heitjans
,
P.
, and
Kärger
,
J.
, 2005,
Diffusion in Condensed Matter: Methods, Materials, Models
,
Springer
,
New York
.
29.
Ullal
,
C. K.
,
Maldovan
,
M.
,
Thomas
,
E. L.
,
Chen
,
G.
,
Han
,
Y. J.
, and
Yang
,
S.
, 2004, “
Photonic Crystals Through Holographic Lithography: Simple Cubic, Diamond-Like, and Gyroid-Like Structures
,”
Appl. Phys. Lett.
0003-6951,
84
(
26
), pp.
5434
5436
.
30.
ASTM
, 1999, “
Standard Test Methods for Water Vapor Transmission of Materials: Upright Cup Method
,” American Society for Testing and Materials Annual Book of ASTM Standards, Part 3.01, ASTM E, 96, Procedure B, Conshohocken, PA.
31.
Traum
,
M. J.
, 2007, “
Latent Heat Fluxes Through Nano-Engineered Porous Materials
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
32.
Cravalho
,
E. G.
, and
Smith
,
J. L.
, 1981,
Engineering Thermodynamics
,
Pitman
,
Boston
, pp.
522
.
33.
Whitaker
,
S.
, 1977,
Fundamental Principles of Heat Transfer
,
Pergamon
,
New York
.
34.
Mills
,
A. F.
, 1999,
Basic Heat and Mass Transfer
, 2nd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
35.
Satterfield
,
C. N.
, 1991,
Heterogeneous Catalysis in Industrial Practice
, 2nd ed.,
McGraw-Hill
,
New York
.
36.
Deen
,
W. M.
, 1998,
Analysis of Transport Phenomena
,
Oxford University Press
,
New York
.
37.
Mills
,
A. F.
, 1999,
Basic Heat Transfer
, 2nd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
38.
Tritton
,
D. J.
, 1977,
Physical Fluid Dynamics
,
Van Nostrand Reinhold
,
New York
.
You do not currently have access to this content.