The combustion synthesis of carbon nanotubes is reviewed, examining their formation and control in diffusion flames. Much of the initial work in this area employed coflow diffusion flames and provided insight into carbon nanotube (CNT) formation. However, the inherent multidimensional nature of such coflow flames made the critical spatial location difficult to maintain. Among this early work, our UIC group demonstrated the superiority of the opposed flow diffusion flame configuration due to its uniform radial distribution that reduces such flow to a one-dimensional process. While a summary of the early coflow flame work is presented, the use of the opposed flow diffusion flame will be the focus of this review. The production of carbon nanostructures in the absence of a catalyst is discussed together with the range of morphology of nanostructures generated when a catalyst is employed. The important aspect of control of the growth and orientation of CNTs and generation of CNT arrays through the use of electric fields is examined as is the use of anodized aluminum oxide templates. Fruitful areas for further research such as the functional coating of CNTs with polymers and the application of these opposed flow flames to synthesis of other materials are discussed.

1.
Iijima
,
S.
, 1991, “
Helical Microtubules of Graphitic Carbon
,”
Nature (London)
0028-0836,
354
, pp.
56
58
.
2.
Shi
,
Z.
,
Lian
,
Y.
,
Zhou
,
X.
,
Gu
,
Z.
,
Zhang
,
Y.
,
Iijima
,
S.
,
Zhiou
,
L.
,
Yue
,
K. T.
, and
Zhang
,
S.
, 1999, “
Mass Production of Single-Wall Carbon Nanotubes by Arc Discharge Method
,”
Carbon
0008-6223,
37
, pp.
1449
1453
.
3.
Guo
,
T.
,
Nikolaev
,
P.
,
Thess
,
A.
,
Colbert
,
D. T.
, and
Smalley
,
R. E.
, 1995, “
Catalytic Growth of Single-Walled Nanotubes by Laser Vaporization
,”
Chem. Phys. Lett.
0009-2614,
243
, pp.
49
54
.
4.
Andrews
,
R.
,
Jacques
,
D.
,
Rao
,
A. M.
,
Derbyshire
,
F.
,
Qian
,
D.
,
Fan
,
X.
,
Dickey
,
E. C.
, and
Chen
,
J.
, 1999, “
Continuous Production of Aligned Carbon Nanotubes: A Step Closer to Commercial Realization
,”
Chem. Phys. Lett.
0009-2614,
303
, pp.
467
474
.
5.
Thess
,
A.
,
Lee
,
R.
,
Nikolaev
,
P.
,
Dai
,
H. J.
,
Petit
,
P.
,
Robert
,
J.
,
Xu
,
C. H.
,
Lee
,
Y. H.
,
Kim
,
S. G.
,
Rinzler
,
A. G.
,
Colbert
,
D. T.
,
Scuseria
,
G. E.
,
Tomanek
,
D.
,
Fischer
,
J. E.
, and
Smalley
,
R. E.
, 1996, “
Crystalline ropes of Metallic Carbon Nanotubes
,”
Science
0036-8075,
273
, pp.
483
487
.
6.
Yuan
,
L.
,
Saito
,
K.
,
Pan
,
C.
,
Williams
,
F. A.
, and
Gordon
,
A. S.
, 2001, “
Nanotubes From Methane Flames
,”
Chem. Phys. Lett.
0009-2614,
340
, pp.
217
223
.
7.
Yuan
,
L.
,
Saito
,
K.
,
Hu
,
W.
, and
Chen
,
Z.
, 2001, “
Ethylene Flame Synthesis of Well-Aligned Multi-Walled Carbon Nanotubes
,”
Chem. Phys. Lett.
0009-2614
346
, pp.
23
28
.
8.
Yuan
,
L.
,
Li
,
T. X.
, and
Saito
,
K.
, 2002, “
Synthesis of Multiwalled Carbon Nanotubes Using Methane/Air Diffusion Flames
,”
Proc. Combust. Inst.
1540-7489,
29
, pp.
1087
1092
.
9.
Merchan-Merchan
,
W.
,
Saveliev
,
A. V.
,
Kennedy
,
L. A.
, and
Fridman
,
A. A.
, 2002, “
Formation of Carbon Nanotubes in Counter-Flow, Oxy-Methane Diffusion Flames Without Catalyst
,”
Chem. Phys. Lett.
0009-2614,
354
, pp.
20
24
.
10.
Merchan-Merchan
,
W.
,
Saveliev
,
A. V.
,
Kennedy
, and
L. A.
, 2003, “
Carbon Nanostructures in Opposed Flow Methane Oxy Flames
,”
Combust. Sci. Technol.
0010-2202,
175
, pp.
2217
2236
.
11.
Merchan-Merchan
,
W.
,
Saveliev
,
A. V.
, and
Kennedy
,
L. A.
, 2004, “
High-Rate Flame Synthesis of Vertically Aligned Carbon Nanotubes Using Electric Field Control
,”
Carbon
0008-6223,
42/3
, pp.
599
608
.
12.
Vander Wal
,
R. L.
, 2000, “
Diffusion Flame Synthesis of Single-Walled Carbon Nanotubes
,”
Chem. Phys. Lett.
0009-2614,
323
, pp.
217
223
.
13.
Vander Wal
,
R. L.
, 2000, “
Flame Synthesis of Substrate-Supported Metal-Catalyzed Carbon Nanotubes
,”
Chem. Phys. Lett.
0009-2614,
324
, pp.
217
223
.
14.
Vander Wal
,
R. L.
, and
Lee
,
J. H.
, 2002, “
Ferrocene as a Precursor Reagent for Metal-Catalyzed Carbon Nanotubes: Competing Effects
,”
Combust. Flame
0010-2180,
130
, pp.
27
36
.
15.
Vander Wal
,
R. L.
, 2002, “
Fe-Catalyzed Single-Walled Carbon Nanotube Synthesis Within a Flame Environment
,”
Combust. Flame
0010-2180,
130
, pp.
37
47
.
16.
Vander Wal
,
R. L.
,
Hall
,
L. J.
, and
Berger
,
G. M.
, 2002, “
Optimization of Flame Synthesis for Carbon Nanotubes Using Supported Catalyst
,”
J. Phys. Chem. B
1089-5647,
106
, pp.
13122
13132
.
17.
Height
,
M. J.
,
Howard
,
J. B.
,
Tester
,
J. W.
, and
Vander Sande
,
J. B.
, 2004, “
Flame Synthesis of Single-Walled Carbon Nanotubes
,”
Carbon
0008-6223,
42
, pp.
2295
2307
.
18.
Avigal
,
Y.
, and
Kalish
,
R.
, 2001, “
Growth of Aligned Carbon Nanotubes by Biasing During Growth
,”
Appl. Phys. Lett.
0003-6951,
78
(
16
), pp.
2291
2293
.
19.
Srivastava
,
A.
,
Srivastava
,
A. K.
, and
Srivastava
,
O. N.
, 2001, “
Curious Aligned of Carbon Nanotubes Under Applied Electric Field
,”
Carbon
0008-6223,
39
, pp.
201
206
.
20.
Lee
,
K. H.
,
Cho
,
J. M.
, and
Sigmund
,
W.
, 2003, “
Control of Growth Orientation for Carbon Nanotubes
,”
Appl. Phys. Lett.
0003-6951,
82
(
3
), pp.
448
450
.
21.
Hurt
,
R.
, 2005, “
Synthesis and Destruction of Carbon Materials and Nanoforms in Flames
,”
Proceedings of the Fourth Joint Meeting U.S. Section of the Combustion Institute
, Plenary Session II.
22.
Li
,
T. X.
,
Zhang
,
H. G.
,
Wang
,
F. J.
,
Chen
,
Z.
, and
Saito
,
K.
, 2007, “
Synthesis of Carbon Nanotubes on Ni-Alloy and Si-Substrates Using Counterflow Methane-Air Diffusion Flames
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
1849
1856
.
23.
Lutz
,
A. E.
,
Kee
,
R. J.
,
Grcar
,
J. F.
, and
Rupley
,
F. M.
, 1996, “
OPPDIFF: A Fortran Program for Computing Opposed Flow Diffusion Flames
,” Sandia National Laboratories Report No. SAND96-8243.
24.
Merchan-Merchan
,
W.
, 2004, “
Flame Synthesis of Carbon Nanotubes and Related Carbon Nano-Materials
,” Ph.D. thesis, University Illinois at Chicago.
25.
Silvestrini
,
M.
,
Merchan-Merchan
,
W.
,
Richter
,
H.
,
Saveliev
,
A.
, and
Kennedy
,
L. A.
, 2005, “
Fullerenes Formation in Atmospheric Pressure Opposed Flow Oxy-Flames
,”
Proc. Combust. Inst.
1540-7489,
30
, pp.
2545
2552
.
26.
Baker
,
R. T. K.
, 1989, “
Catalytic Growth of Carbon Filaments
,”
Carbon
0008-6223,
315
, pp.
315
323
.
27.
Naha
,
S.
,
Sen
,
S.
,
De
,
A. K.
, and
Puri
,
I. K.
, 2007, “
A Detailed Model for the Flame Synthesis of Carbon Nanotubes and Nanofibers
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
1821
1829
.
28.
Motojima
,
S.
,
Hasegawa
,
I.
,
Kagiya
,
S.
,
Andoh
,
H.
, and
Iwanaga
,
H.
, 1995, “
Vapor Phase Preparation of Micro-Coiled Carbon Fibers by Metal Powder Catalyzed Pyrolysis of Acetylene Containing a Small Amount of Phosphorus Impurity
,”
Carbon
0008-6223,
33
, pp.
1167
1173
.
29.
Chen
,
X.
, and
Motojima
,
S.
, 1999, “
Morphologies of Carbon Micro-Coils Grown by Chemical Vapor Deposition
,”
J. Mater. Sci.
0022-2461,
34
, pp.
5519
5524
.
30.
Amelinckx
,
S.
,
Zhang
,
X. B.
,
Bernaerts
,
D.
,
Zhang
,
X. F.
,
Ivanov
,
V.
, and
Nagy
,
J. B.
, 1994, “
A Formation Mechanism for Catalytically Grown Helix-Shaped Graphite Nanotubes
,”
Science
0036-8075,
265
, pp.
635
637
.
31.
Wen
,
Y.
, and
Shen
,
Z.
, 2001, “
Synthesis of Regular Coiled Carbon Nanotubes by Ni-Catalyzed Pyrolysis of Acetylene and a Growth Mechanism Analysis
,”
Carbon
0008-6223,
39
, pp.
2369
2386
.
32.
Murayama
,
H.
, and
Maeda
,
M. A.
, 1990, “
A Novel Form of Filamentous Graphite
,”
Nature (London)
0028-0836,
345
, pp.
791
793
.
33.
Beltrame
,
A.
,
Porshnev
,
P.
,
Merchan-Merchan
,
W.
,
Saveliev
,
A.
,
Fridman
,
A.
,
Kennedy
,
L. A.
,
Petrova
,
O.
,
Zhdanok
,
S.
,
Amoury
,
F.
, and
Charon
,
O.
, 2001, “
Soot and NO Formation in Methane Oxygen Enriched Diffusion Flames
,”
Combust. Flame
0010-2180,
124
, pp.
295
310
.
34.
Endo
,
M.
,
Kim
,
Y. A.
,
Takeda
,
T.
,
Hong
,
S. H.
,
Matusita
,
T.
,
Nayashi
,
T.
, and
Dresselhaus
,
M. S.
, 2001, “
Structural Characterization of Carbon Nanofibers Obtained by Hydrocarbon Pyrolysis
,”
Carbon
0008-6223,
39
(
13
), pp.
2003
2010
.
35.
Lee
,
K. H.
,
Cho
,
J. M.
, and
Sigmund
,
W.
, 2002, “
Control of Growth Orientation for Carbon Nanotubes
,”
Appl. Phys. Lett.
0003-6951,
82
(
3
), pp.
448
450
.
36.
Merkulov
,
V. I.
,
Melechkov
,
A. V.
,
Guillorn
,
M. A.
, and
Simpson
,
M. L.
, 2002, “
Controlled Alignment of Carbon Nanofibers in a Large-Scale Synthesis Process
,”
Appl. Phys. Lett.
0003-6951,
80
(
25
), pp.
4816
4818
.
37.
Zhang
,
Y.
,
Chang
,
A.
,
Cao
,
J.
,
Wang
,
Q.
,
Kim
,
W.
,
Li
,
Y.
,
Morris
,
N.
,
Yenilmez
,
E.
,
Kong
,
J.
, and
Dai
,
H.
, 2001, “
Electric-Field-Directed Growth of Aligned Single-Walled Carbon Nanotubes
,”
Appl. Phys. Lett.
0003-6951,
79
, pp.
3155
3157
.
38.
de Heer
,
W. A.
,
Chatelain
,
A.
, and
Ugarte
,
D.
, 1995, “
A Carbon Nanotube Filed-Emission Electron Source
,”
Science
0036-8075,
270
, pp.
1179
1180
.
39.
Maiti
,
A.
,
Brabec
,
C. J.
,
Roland
,
C.
, and
Bernholc
,
J.
, 1994, “
Growth Energetics of Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
73
, pp.
2468
2471
.
40.
Balavione
,
J.
,
Schulz
,
F.
,
Richard
,
C.
,
Mallouh
,
V.
,
Ebessen
,
T.
, and
Mioskowski
,
C.
, 1999, “
Helical Crystallization of Proteins on Carbon Nanotubes: A First Step Towards the Development of New Biosensors
,”
Angew. Chem., Int. Ed.
1433-7851,
38
, pp.
1912
1915
.
41.
Zhang
,
Y.
,
Franklin
,
N. W.
,
Chen
,
R. J.
, and
Dai
,
H.
, 2000, “
Metal Coating on Suspended Carbon Nanotubes and Its Implication to Metal-Tube Interaction
,”
Chem. Phys. Lett.
0009-2614,
331
, pp.
35
41
.
42.
Poetschke
,
P.
,
Bhattacharyya
,
A.
, and
Janke
,
A.
, 2004, “
Carbon Nanotube-Filled Polycarbonate Composites Produced by Melt Mixing and Their Use in Blends With Polyethylene
,”
Carbon
0008-6223,
42
(
5–6
), pp.
965
969
.
43.
Qian
,
D.
,
Dickey
,
E. C.
,
Andrews
,
R.
, and
Rantell
,
T.
, 2000, “
Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites
,”
Appl. Phys. Lett.
0003-6951,
76
(
20
), pp.
2868
2870
.
44.
Ning
,
J.
,
Zhang
,
J.
,
Pan
,
Y.
, and
Guo
, 2004, “
Surfactants Assisted Processing of Carbon Nanotube-Reinforced SiO2 Matrix Composites
,”
Ceram. Int.
0272-8842,
30
, pp.
63
67
.
45.
Wang
,
X. B.
,
Liu
,
Z. M.
,
Hu
,
P. A.
,
Liu
,
Y. Q.
,
HAn
,
B. X.
, and
Zhu
,
D. B.
, 2005, “
Nanofluids in Carbon Nanotubes Using supercritical CO2: A First Step Towards a Nanochemical Reaction
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
80
, pp.
637
639
.
46.
Suemitsu
,
M.
,
Abe
,
T.
,
Na
,
H.-J.
, and
Yamane
,
H.
, 2005, “
MoO2 Hollow Fiber With Rectangular Cross Sections
,”
Jpn. J. Appl. Phys., Part 2
0021-4922,
44
, pp.
L449
L450
.
47.
Abe
,
T.
,
Suemitsu
,
M.
, and
Miyamoto
,
N.
, 1993, “
Formation of Highly Uniform and Dense Diamond Microcrystal Thin Films Using a Combustion Flame Surrounded by an Inert-Gas Flow
,”
J. Appl. Phys.
0021-8979,
74
(
5
), pp.
3531
3537
.
48.
Dhas
,
N. A.
, and
Gedanken
,
A.
, 1997, “
Sonochemical Synthesis of Molybdenum Oxide- and Molybdenum Carbide-Silica Nanocomposites
,”
Chem. Mtls.
,
9
, pp.
3144
3154
.
49.
Anpo
,
M.
,
Kondo
,
M.
,
Kubokawa
,
Y.
,
Louis
,
C.
, and
Che
,
M.
, 1988, “
Dynamic Studies of the Photoinduced Metathesis of C3H6 and Photoreduction of Mo and CO on Anchored and Impregnated Mo/SiO2 Catalysts
,”
J. Chem. Soc., Faraday Trans. 1
0300-9599,
84
(
8
), pp.
2771
2782
.
50.
Liu
,
Y.
,
Qian
,
Y.
,
Zhang
,
M.
,
Chen
,
Z.
, and
Wang
,
C.
, 1996, “
Preparation of Nano-Sized Amorphous Molybdenum Dioxide Powders by Use of γ-Ray Radiation Method
,”
Mater. Res. Bull.
0025-5408,
31
, pp.
1029
1033
.
51.
Zhou
,
J.
,
Xu
,
N. S.
,
Deng
,
S. Z.
,
Chen
,
J.
, and
She
,
J. C.
, 2003, “
Synthesis of Large-Scaled MoO2 Nanowire Arrays
,”
Chem. Phys. Lett.
0009-2614,
382
, p.
443
.
52.
Merchan-Merchan
,
W.
,
Saveliev
,
A. V.
, and
Kennedy
,
L. A.
, 2006, “
Flame Synthesis of Molybdenum Oxide Whiskers
,”
Chem. Phys. Lett.
0009-2614,
422
, pp.
72
77
.
You do not currently have access to this content.