An experimental apparatus was designed and fabricated to measure the effective thermal conductivities and simulate the temperature and pressure history of reentry of a launch vehicle into a planetary atmosphere with a maximum temperature of 1600°C. An improved testing method was used to test the thermal conductivities of an alumina fibrous insulation at environmental pressures from 0.03Pato105Pa with the average temperature of the sample increased to 864°C and its density being 128kgm3. A method based on temperature difference is used to compute the in-plane effective thermal conductivity, and the result shows that the in-plane thermal conductivity along the y axis is 1.47 times that along the x axis. The influences of temperature and pressure on the contribution of three heat transfer mechanisms to the effective thermal conductivities were compared.

1.
Blosser
,
M. L.
,
Chen
,
R. R.
,
Schmidt
,
I. H.
,
Dorsey
,
J. T.
,
Poteet
,
C. C.
,
Bird
,
R. K.
, and
Wurster
,
K. E.
, 2004, “
Development of Advanced Metallic Thermal-Protection-System Prototype Hardware
,”
J. Spacecr. Rockets
0022-4650,
41
(
2
), pp.
183
194
.
2.
Keller
,
K.
,
Hoffmann
,
M.
,
Zorner
,
W.
, and
Blumenberg
,
J.
, 1992, “
Application of High Temperature Multilayer Insulations
,”
Acta Astronaut.
0094-5765,
26
(
6
), pp.
451
458
.
3.
Mathes
,
R.
,
Blumenberg
,
J.
, and
Keller
,
K.
, 1990, “
Radiative Heat Transfer in Insulations With Random Fibre Orientation
,”
Int. J. Heat Mass Transfer
0017-9310,
33
(
4
), pp.
767
770
.
4.
Williams
,
S. D.
, and
Curry
,
D. M.
, 1993, “
Prediction of Rigid Silica Based Insulation Conductivity Using Morphological Data
,”
Heat Transfer Measurements and Analysis
,
American Society of Mechanical Engineers
,
New York
, HTD-249, pp.
51
59
.
5.
Petrov
,
V. A.
, 1997, “
Combined Radiation and Conduction Heat Transfer in High Temperature Fiber Thermal Insulation
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
9
), pp.
2241
2247
.
6.
Lee
,
S. C.
, and
Cunnington
,
G. R.
, 1998, “
Fiber Orientation Effect on Radiative Heat Transfer Through Fiber Composites
,” Paper No. AIAA-1998-2840.
7.
Lee
,
S. C.
, and
Cunnington
,
G. R.
, 2000, “
Conduction and Radiation Heat Transfer in High-Porosity Fiber Thermal Insulation
,”
J. Thermophys. Heat Transfer
0887-8722,
14
(
2
), pp.
121
136
.
8.
Spinnler
,
M.
,
Winter
,
E. R. F.
,
Viskanta
,
R.
, and
Sattelmayer
,
T.
, 2004, “
Theoretical Studies of High-Temperature Multilayer Thermal Insulations Using Radiation Scaling
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
84
(
4
), pp.
477
491
.
9.
Spinnler
,
M.
,
Winter
,
E. R. F.
, and
Viskanta
,
R.
, 2004, “
Studies on High-Temperature Multilayer Thermal Insulations
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
6–7
), pp.
1305
1312
.
10.
Daryabeigi
,
K.
, 1999, “
Analysis and Testing of High Temperature Fibrous Insulation for Reusable Launch Vehicles
,” Paper No. AIAA-99-1044.
11.
Daryabeigi
,
K.
, 2000, “
Design of High Temperature Multi-Layer Insulation for Reusable Launch Vehicles
,” Ph.D. thesis, University of Virginia.
12.
Daryabeigi
,
K.
, 1999, “
Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles
,” NASA TM-199-208972.
13.
Daryabeigi
,
K.
, 2001, “
Thermal Analysis and Design of Multi-layer Insulation for Re-entry Aerodynamic Heating
,” Paper No. AIAA-2001-2834.
14.
Daryabeigi
,
K.
, 2002, “
Heat Transfer in High-Temperature Fibrous Insulation
,” Paper No. AIAA 2002-3332.
You do not currently have access to this content.