A three-dimensional mathematical model is presented that models bubble deformation of a dielectric fluid due to the presence of a nonuniform electric field and calculates the net dielectrophoretic force that is exerted by the electric field on the bubble. The study includes the development of a method of predicting the shape of a bubble based on the arbitrary distribution of stresses over its surface without requiring an axisymmetric configuration. The reciprocal effect of the bubble’s presence on the electric field is also incorporated into the model, and dimensional analysis is used to obtain a single key parameter that governs the bubble deformation phenomenon. Numerical implementation of the mathematical model shows that the bubble deformation can be significant. Furthermore, bubble deformation and electric field distortion can have significant effects on the dielectrophoretic behavior of bubbles in nonuniform fields, especially within small-scale devices where the bubble size and electrode spacing are similar in magnitude.

1.
Cotter
,
T. P.
, 1984, “
Principles and Prospects of Micro Heat Pipes
,”
Proceedings of the Fifth International Heat Pipe Conference
,
K.
Oshima
,
Y.
Kobayashi
,
M.
Murakami
, and
K.
Negishi
, eds.,
Japan Technology & Economics Center
,
Tokyo
, pp.
328
335
.
2.
Babin
,
B. R.
,
Peterson
,
G. P.
, and
Wu
,
D.
, 1990, “
Steady-State Modeling and Testing of a Micro Heat Pipe
,”
ASME J. Heat Transfer
0022-1481,
112
(
3
), pp.
595
601
.
3.
Mallik
,
A. K.
,
Peterson
,
G. P.
, and
Weichold
,
M. H.
, 1995, “
Fabrication of Vapor-Deposited Micro Heat Pipe Arrays as an Integral Part of Semiconductor Devices
,”
J. Microelectromech. Syst.
1057-7157,
4
(
3
), pp.
119
131
.
4.
Peterson
,
G. P.
, and
Ma
,
H. B.
, 1996, “
Theoretical Analysis of the Maximum Heat Transport in Triangular Grooves: A Study of Idealized Micro Heat Pipes
,”
ASME J. Heat Transfer
0022-1481,
118
(
4
), pp.
734
739
.
5.
Peterson
,
G. P.
, 2000, “
Applications of Microscale Phase Change Heat Transfer: Micro Heat Pipes and Micro Heat Spreaders
,”
Handbook of Microelectromechanical Systems
,
M.
Gad-el-Hak
, ed.,
CRC
,
New York
, pp.
301
326
.
6.
Le Berre
,
M.
,
Launay
,
S.
, and
Lallemand
,
M.
, 2003, “
Fabrication and Experimental Investigation of Silicon Micro Heat Pipes for Cooling Electronics
,”
J. Micromech. Microeng.
0960-1317,
13
(
3
), pp.
436
441
.
7.
Lee
,
M.
,
Wong
,
M.
, and
Zohar
,
Y.
, 2003, “
Integrated Micro-Heat-Pipe Fabrication Technology
,”
J. Microelectromech. Syst.
1057-7157,
12
(
2
), pp.
138
146
.
8.
Peterson
,
G. P.
, 1994,
An Introduction to Heat Pipes: Modeling, Testing, and Applications
,
Wiley
,
New York
, Chaps. 3 and 4.
9.
Melcher
,
J.
, 1981,
Continuum Electromechanics
,
MIT
,
Cambridge, MA
.
10.
Bryan
,
J. E.
, and
Seyed-Yagoobi
,
J.
, 2001, “
Influence of Flow Regime, Heat Flux, and Mass Flux on Electrohydrodynamically Enhanced Convective Boiling
,”
ASME J. Heat Transfer
0022-1481,
123
(
2
), pp.
355
367
.
11.
Darabi
,
J.
,
Ohadi
,
M. M.
, and
Dessiatoun
,
S. V.
, 2000, “
Augmentation of Thin Falling-Film Evaporation on Horizontal Tubes Using an Applied Electric Field
,”
ASME J. Heat Transfer
0022-1481,
122
(
2
), pp.
391
398
.
12.
Bryan
,
J. E.
, and
Seyed-Yagoobi
,
J.
, 1997, “
Heat Transport Enhancement of Monogroove Heat Pipe With Electrohydrodynamic Pumping
,”
J. Thermophys. Heat Transfer
0887-8722,
11
(
3
), pp.
454
460
.
13.
Yu
,
Z.
,
Hallinan
,
K. P.
,
Bhagat
,
W.
, and
Kashani
,
R. A.
, 2002, “
Electrohydrodynamically Augmented Micro Heat Pipes
,”
J. Thermophys. Heat Transfer
0887-8722,
16
(
2
), pp.
180
186
.
14.
Garton
,
C. G.
, and
Krasuchi
,
Z.
, 1964, “
Bubbles in Insulating Liquids: Stability in an Electric Field
,”
Proc. R. Soc. London, Ser. A
1364-5021,
208
, pp.
211
226
.
15.
Melcher
,
J. R.
, and
Taylor
,
G. I.
, 1969, “
Electrohydrodynamics: A Review of the Role of Interfacial Shear Stress
,”
Annu. Rev. Fluid Mech.
0066-4189,
1
, pp.
111
146
.
16.
Miksis
,
M. J.
, 1981, “
Shape of a Drop in an Electric Field
,”
Phys. Fluids
0031-9171,
24
(
11
), pp.
1967
1972
.
17.
Ogata
,
J.
, and
Yabe
,
A.
, 1993, “
Basic Study on the Enhancement of Nucleate Boiling Heat Transfer by Applying Electric Fields
,”
Int. J. Heat Mass Transfer
0017-9310,
36
(
3
), pp.
775
782
.
18.
Jones
,
T. B.
, and
Bliss
,
G. W.
, 1977, “
Bubble Dielectrophoresis
,”
J. Appl. Phys.
0021-8979,
48
(
4
), pp.
1412
1417
.
19.
Hara
,
M.
, and
Wang
,
Z.
, 1994, “
An Analytical Study of Bubble Motion in Liquid Nitrogen Under D. C. Non-uniform Electric Fields
,”
Proceedings of the Fourth International Conference on Properties and Applications of Dielectric Materials
,
IEEE
,
New York
, pp.
459
462
.
20.
Pearson
,
M. R.
, 2006, “
Deformation and Motion Behavior of a Bubble Due to Non-Uniform Electric Fields
,” M.S. thesis, Illinois Institute of Technology, Chicago, IL.
21.
Stratton
,
J. A.
, 1941,
Electromagnetic Theory
,
McGraw-Hill
,
New York
.
22.
Gray
,
A.
, 1998,
Modern Differential Geometry of Curves and Surfaces With Mathematica
, 2nd ed.,
CRC
,
New York
.
23.
Crowley
,
J. M.
, 1999,
Fundamentals of Applied Electrostatics
,
Laplacian
,
Morgan Hill, CA
.
24.
Herman
,
C.
,
Iacona
,
E.
,
Földes
,
I. B.
,
Suner
,
G.
, and
Milburn
,
C.
, 2002, “
Experimental Visualization of Bubble Formation from an Orifice in Microgravity in the Presence of Electric Fields
.”
Exp. Fluids
0723-4864,
32
(
3
), pp.
396
412
.
You do not currently have access to this content.