This article aims to study the effect of pressure drop on the thermal behavior of porous burners. Since the reticulated ceramics are used in the burners’ construction, in the previous researches pressure drop arising from flow velocity was ignored. This research has showed that due to the increase of speed resulting from combustion, the consequence pressure drop creates considerable effects on the thermal performance of porous burners. To study this subject, the temperature of a point on the burner axis has been taken to be constant. The burned gas and exit surface temperature were obtained almost the same for two conditions, one with the pressure held constant and the other with a pressure drop. Results show that the firing rate was decreased up to 18%, compared to the constant pressure case. The thermal radiative efficiency of radiant porous burners, in which the pressure drop has been considered, was increased about 3–5% for the studied equivalence ratio of methane-air combustion.

1.
Howell
,
J.
,
Hall
,
M.
, and
Ellzey
,
J. L.
, 1996, “
Combustion of Hydrocarbon Fuel Within Porous Inert Media
,”
Prog. Energy Combust. Sci.
0360-1285,
22
, pp.
121
145
.
2.
Viskanta
,
R.
, and
Gore
,
J. P.
, 2000, “
Overview of Cellular Ceramic Based Porous Radiant Burners for Supporting Combustion
,”
Int. J. Environ. Technol.
,
1
, pp.
167
203
.
3.
Yoshizawa
,
Y.
,
Echigo
,
R.
, and
Sasaki
,
K.
, 1988, “
Analytical Study on the Structure of Radiation Controlled Flame
,”
Int. J. Heat Mass Transfer
0017-9310,
31
, pp.
311
319
.
4.
Min
,
D. K.
, and
Shin
,
H. D.
, 1991, “
Laminar Premixed Flame Stabilized Inside a Honeycomb Ceramic
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
341
355
.
5.
Zhou
,
X. Y.
, and
Pereira
,
J. C.
, 1997, “
Numerical Study of Combustion and Pollutants Formation in Inert Non-Homogeneous Porous Media
,”
Combust. Sci. Technol.
0010-2202,
130
, pp.
335
364
.
6.
Hsu
,
P. F.
,
Howell
,
J. R.
, and
Matthews
,
R. D.
, 1993, “
A Numerical Investigation of Premixed Combustion Within Porous Inert Media
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
744
750
.
7.
Barra
,
A. J.
,
Diepvens
,
G.
,
Ellzey
,
J. L.
, and
Henneke
,
M. R.
, 2003, “
Numerical Study of the Effect of Material Properties on Flame Stabilization in a Porous Burner
,”
Combust. Flame
0010-2180,
134
, pp.
369
379
.
8.
Kamal
,
M. M.
, and
Mohamad
,
A. A.
, 2006, “
Combustion in Porous Media
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
220
(
A5
),
487
508
.
9.
Mohamad
,
A. A.
,
Viskanta
,
R.
, and
Ramadhyani
,
S.
, 1994, “
Numerical Predictions of Combustion and Heat Transfer in a Packed Bed with Embedded Coolant Tubes
,”
Combust. Sci. Technol.
0010-2202,
96
, pp.
387
407
.
10.
Brenner
,
G.
,
Pickenacker
,
K.
,
Pickenacker
,
O.
,
Trimis
,
D.
,
Wawrzinek
,
K.
, and
Weber
,
T.
, 2000, “
Numerical and Experimental Investigation of Matrix-Stabilized Methane/Air Combustion in Porous Inert Media
,”
Combust. Flame
0010-2180,
123
, pp.
201
213
.
11.
Malico
,
I.
, and
Pereira
,
J. C. F.
, 2001, “
Numerical Study on the Influence of Radiative Properties in Porous Media Combustion
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
951
957
.
12.
Mishra
,
S. C.
,
Steven
,
M.
,
Nemoda
,
S.
,
Talukdar
,
P.
,
Trimis
,
D.
, and
Durst
,
F.
, 2006, “
Heat Transfer Analysis of a Two-Dimensional Rectangular Porous Radiant Burner
,”
Int. Commun. Heat Mass Transfer
0735-1933,
33
, pp.
467
474
.
13.
Smucker
,
M. T.
, and
Ellzey
,
J. L.
, 2004, “
Computational and Experimental Study of a Two Section Porous Burner
,”
Combust. Sci. Technol.
0010-2202,
176
, pp.
1171
1189
.
14.
Verwer
,
J. G.
, 1996, “
Explicit Runge–Kutta Methods for Parabolic Partial Differential Equations
,”
Appl. Numer. Math.
0168-9274,
22
, pp.
359
379
.
15.
Kee
,
R. K.
,
Grcar
,
J. F.
,
Smooke
,
M. D.
, and
Miller
,
J. A.
, 1985, “
A. Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames
,” Sandia National Laboratories Report No. SAND85-8240.
16.
Kee
,
R. K.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
, 1993, “
CHEMKIN II., A. Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics
,” Sandia Laboratories Report No. SAND 89-8009B.
17.
Smooke
,
M. D.
,
Miller
,
J. A.
, and
Kee
,
R. K.
, 1983, “
Determination of Adiabatic Flame Speeds by Boundary Value Methods
,”
Combust. Sci. Technol.
0010-2202,
34
, pp.
79
90
.
18.
Wharton
,
J. A.
,
Ellzey
,
J. L.
, and
Bogard
,
D. G.
, 2005, “
An Experimental Study of Turbulence Intensities and Non-Uniformities in the Exit Flow from a Porous Combustor
,”
Exp. Fluids
0723-4864,
38
, pp.
701
707
.
You do not currently have access to this content.