A fast and efficient method based on the proper orthogonal decomposition (POD) technique for predicting fluid flow and heat transfer problems is proposed in this paper. POD is first applied to an ensemble of numerical simulation results at design parameters to obtain the empirical coefficients and eigenfunctions, and then the fluid and temperature fields in the range of design parameters are resolved by a linear combination of empirical coefficients and eigenfunctions. The empirical coefficients at off-design parameters are obtained by a cubic spline interpolation method for steady problems and a Galerkin projection method for transient problems. Finally, the efficiency and accuracy of the algorithm are examined by three examples. The POD based algorithm can predict both the velocity and temperature fields in the range of design parameters accurately at a price of a large number of precomputed cases (snapshots). It also brings significant computational time savings for the new cases within the parameter range presimulated compared with the finite volume method with SIMPLE-like algorithm.

1.
Bleris
,
L. G.
, and
Kothare
,
M. V.
, 2005, “
Reduced Order Distributed Boundary Control of Thermal Transients in Microsystems
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
13
, pp.
853
867
.
2.
Azeez
,
M. F. A.
, and
Vakakis
,
A. F.
, 2001, “
Proper Orthogonal Decomposition of a Class of Vibroimpact Oscillations
,”
J. Sound Vib.
0022-460X,
240
, pp.
859
889
.
3.
Kirby
,
M.
, and
Sirovich
,
L.
, 1990, “
Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
12
, pp.
103
108
.
4.
Allery
,
C.
,
Beghein
,
C.
, and
Hamdouni
,
A.
, 2005, “
Applying Proper Orthogonal Decomposition to the Computation of Particle Dispersion in a Two-Dimensional Ventilated Cavity
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
10
, pp.
907
920
.
5.
Arjocu
,
S. C.
, and
Liburdy
,
J. A.
, 2000, “
Identification of Dominant Heat Transfer Modes Associated With the Impingement of an Elliptical Jet Array
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
240
247
.
6.
Tyagi
,
M.
, and
Acharya
,
S.
, 2005, “
Large Eddy Simulations of Flow and Heat Transfer in Rotating Ribbed Duct Flows
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
486
498
.
7.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
, 1993, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
25
, pp.
539
575
.
8.
Holmes
,
P.
,
Lumley
,
J. L.
, and
Berkooz
,
G.
, 1996,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
,
UK
.
9.
Sirovich
,
L.
, 1987, “
Turbulence and the Dynamics of Coherent Structure. Part I,II,III
,”
Q. Appl. Math.
0033-569X,
45
, pp.
561
571
.
10.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
.
11.
Tao
,
W. Q.
, 2001,
Numerical Heat Transfer
,
2nd ed.
,
Xi’an Jiaotong University Press
,
Xi’an
.
12.
Patankar
,
S. V.
, and
Spalding
,
D. B.
, 1972, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
1787
1806
.
13.
Leonard
,
B. P.
, 1979, “
A Stable and Accurate Convective Modeling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
19
, pp.
59
98
.
14.
Hortmann
,
M.
,
Peric
,
M.
, and
Scheuerer
,
G.
, 1990, “
Finite Volume Multigrid Prediction of Laminar Natural Convection: Bench-Mark Solutions
,”
Int. J. Numer. Methods Fluids
0271-2091,
11
, pp.
189
207
.
15.
Ghia
,
U.
,
Ghia
,
K. N.
, and
Shin
,
C. T.
, 1982, “
High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method
,”
J. Comput. Phys.
0021-9991,
48
, pp.
387
411
.
You do not currently have access to this content.