One, two, and three needle cryoprobes, 1.47mm outside diameter, simultaneously and uniformly operated by high pressure argon gas, were tested in a gel simulating the thermal properties of biological tissues. The probes were inserted into the same depth in the gel through two parallel templates with holes drilled on a 5×5mm2 mesh. The temperature of the active segment of the probe was monitored by a single soldered thermocouple (TC). Temperatures in the gel were monitored by K-type TC strings in the radial, and in the downward and upward axial directions. The phase-change problem in the gel was solved by ANSYS7.0, based on the enthalpy method. Calculated and measured results compared reasonably well with the most deviations observed in the upward axial direction. Results of this study may be summarized as follows: (a) Due to the cylindrical structure of the probe, the advancement of the frozen fronts was more pronounced in the upward axial and the radial directions than in the downward direction. (b) The farthest placement of the two probes (10mm) yielded the largest volumes enclosed by the isothermal contours. (c) In the tightest two placement configurations of the three probes, the 40°C fronts of all frozen lumps have joined together even after 1min of operation, while in the less tight configurations, joining occurred later. (d) In multiprobe applications and for a given duration of application, there exists a certain placement configuration that will produce the maximal volume of any temperature-specific frozen lump. The computational tool presented in this study could assist the surgeon in the preplanning of cryosurgical procedures and thus reduce uncertainties and enhance its success rate.

1.
Onik
,
G.
, 1996, “
Cryosurgery
,”
Crit. Rev. Oncol. Hematol.
1040-8428,
23
, pp.
1
24
.
2.
Rubinsky
,
B.
, and
Onik
,
G.
, 1991, “
Cryosurgery: Advances in the Application of Low Temperatures to Medicine
,”
Int. J. Refrig.
0140-7007,
14
, pp.
190
199
.
3.
Shepherd
,
J.
, and
Dawber
,
R. P. R.
, 1982, “
The Historical and Scientific Basis of Cryosurgery
,”
Clin. Exp. Dermatol.
0307-6938,
7
, pp.
321
328
.
4.
Gage
,
A.
, and
Baust
,
J.
, 1998, “
Mechanisms of Tissue Injury in Cryosurgery
,”
Cryobiology
0011-2240,
37
, pp.
171
186
.
5.
Hoffmann
,
N. E.
, and
Bischof
,
J. C.
, 2002, “
The Cryobiology of Cryosurgical Injury
,”
Urology
0090-4295,
60
, pp.
40
49
.
6.
Gage
,
A. A.
, and
Huben
,
R. P.
, 2000, “
Cryosurgical Ablation of the Prostate
,”
Semin Urol. Oncol.
1081-0943,
5
, pp.
11
19
.
7.
Zouboulis
,
C. C.
, 1998, “
Cryosurgery in Dermatology
,”
Eur. J. Dermatol.
1167-1122,
8
, pp.
466
474
.
8.
Mazur
,
P.
, 1968, “
Physical-Chemical Factors Underlying Cell Injury in Cryosurgical Freezing
,”
Cryosurgery
,
R.
Rand
,
A.
Rinfret
, and
H.
von Leden
, eds.,
Thomas
,
Springfield, IL
, pp.
32
51
.
9.
Saliken
,
J. C.
,
Donnelly
,
B. J.
, and
Rewcastle
,
J. C.
, 2002, “
The Evolution and State of Modern Technology for Prostate Cryosurgery
,”
Urology
0090-4295,
60
, pp.
26
33
.
10.
Zisman
,
A.
,
Pantuck
,
A. J.
,
Cohen
,
J. K.
, and
Belldegrun
,
A. S.
, 2001, “
Prostate Cryoablation Using Direct Transperineal Placement of Ultrathin Probes Through a 17-Gauge Brachytherapy Template—Technique and Preliminary Results
,”
Urology
0090-4295,
58
, pp.
988
993
.
11.
Orpwood
,
R. D.
, 1981, “
Biophysical and Engineering Aspects of Cryosurgery
,”
Phys. Med. Biol.
0031-9155,
26
, pp.
555
575
.
12.
Stefan
,
J.
, 1891, “
Uber die Theorie des Eisbildung, Insbesondere uber die Eisbildung im Polarmeere
,”
Ann. Phys. Chem.
0003-3804,
42
(
2
), pp.
269
286
.
13.
Neumann
,
F.
, 1912, “
Lectures Given in the 1860’s
,”
Die Partiellen Differential-Gleichungen der Mthematischen Physik
,
5th ed.
,
H.
Weber
, ed.,
Friedrich Vieweg und Sohn
,
Braunschweig
, Vol.
2
, pp.
117
121
.
14.
Ozisik
,
M. N.
, and
Uzzell
,
J. C.
, 1979, “
Exact Solution for Freezing in Cylindrical Symmetry With Extended Freezing Temperature Range
,”
ASME J. Heat Transfer
0022-1481,
101
, pp.
331
334
.
15.
Rubinsky
,
B.
, and
Shitzer
,
A.
, 1976, “
Analysis of a Stefan-Like Problem in a Biological Tissue Around a Cryosurgical Probe
,”
ASME J. Heat Transfer
0022-1481,
98
, pp.
514
519
.
16.
Trezek
,
G. J.
, 1985, “
Thermal Analysis for Cryosurgery
,”
Heat Transfer in Medicine and Biology: Analysis and Applications
,
A.
Shitzer
and
R. C.
Eberhart
, eds.,
Plenum
,
New York
, pp.
239
259
.
17.
Rabin
,
Y.
, and
Shitzer
,
A.
, 1995, “
Exact Solution for the Inverse Stefan Problem in Non-Ideal Biological Tissues
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
425
431
.
18.
Weill
,
A.
,
Shitzer
,
A.
, and
Bar-Yoseph
,
P.
, 1993, “
Finite Elements Analysis of the Temperature Field Around Two Adjacent Cryoprobes
,”
ASME J. Biomech. Eng.
0148-0731,
115
, pp.
374
379
.
19.
Shamsundar
,
N.
, and
Sparrow
,
E. M.
, 1975, “
Analysis of Multidimensional Conduction Phase Change Problem Via the Enthalpy Method
,”
ASME J. Heat Transfer
0022-1481,
97
, pp.
333
340
.
20.
Dalhuijsen
,
A. J.
, and
Segal
,
A.
, 1986, “
Comparison of Finite Element Techniques for Solidification Problems
,”
Int. J. Numer. Methods Eng.
0029-5981,
23
, pp.
1807
1829
.
21.
Keanini
,
R. G.
, and
Rubinsky
,
B.
, 1992, “
Optimization of Multiprobe Cryosurgery
,”
ASME J. Heat Transfer
0022-1481,
114
, pp.
796
801
.
22.
Rabin
,
Y.
, and
Stahovich
,
T. F.
, 2003, “
Cryoheater as a Means of Cryosurgery Control
,”
Phys. Med. Biol.
0031-9155,
48
, pp.
619
632
.
23.
Rabin
,
Y.
,
Lung
,
D. C.
, and
Stahovich
,
T. F.
, 2004, “
Computerized Planning of Cryosurgery Using Cryoprobes and Cryocatheters
,”
Technol. Cancer Res. Treat.
1533-0346,
3
(
3
), pp.
229
243
.
24.
Rewcastle
,
J. C.
,
Sandison
,
G. A.
,
Hahn
,
L. J.
,
Saliken
,
J. C.
,
McKinnon
,
J. G.
, and
Donnelley
,
B. J.
, 1998, “
A Model for the Time-Dependent Thermal Distribution Within an Iceball Surrounding a Cryoprobe
,”
Phys. Med. Biol.
0031-9155,
43
, pp.
3519
3534
.
25.
Jankun
,
M.
,
Kelly
,
T. J.
,
Zaim
,
A.
,
Young
,
K.
,
Keck
,
R. W.
,
Selman
,
S. H.
, and
Jankun
,
J.
, 1999, “
Computer Model for Cryosurgery of the Prostate
,”
Comput. Aided Surg.
1092-9088,
4
, pp.
193
199
.
26.
Baissalov
,
R.
,
Sandison
,
G. A.
,
Donnelley
,
B. J.
,
Saliken
,
J. C.
,
McKinnon
,
J. G.
,
Muldrew
,
K.
, and
Rewcastle
,
J. C.
, 2000, “
A Semi-Empirical Planning Model for Optimization of Multiprobe Cryosurgery
,”
Phys. Med. Biol.
0031-9155,
45
, pp.
1085
1098
.
27.
Rewcastle
,
J. C.
,
Sandison
,
G. A.
,
Muldrew
,
K.
,
Saliken
,
J. C.
, and
Donnelley
,
B. J.
, 2001, “
A Model for the Time Dependent Three-Dimensional Thermal Distribution Within Iceballs Surrounding Multiple Cryoprobes
,”
Med. Phys.
0094-2405,
28
(
6
), pp.
1125
1137
.
28.
Wan
,
R.
,
Liu
,
Z.
,
Muldrew
,
K.
, and
Rewcastle
,
J. C.
, 2003, “
A Finite Element Model for Ice Ball Evolution in a Multiprobe Cryosurgery
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
6
(
3
), pp.
197
208
.
29.
Galil-Medical Ltd.
, private communication.
30.
Rabin
,
Y.
, and
Shitzer
,
A.
, 1998, “
Numerical Solution of the Multidimensional Freezing Problem During Cryosurgery
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
32
37
.
31.
Comini
,
G.
, and
Del
Guidice S.
,
, 1976, “
Thermal Aspects of Cryosurgery
,”
ASME J. Heat Transfer
0022-1481,
98
, pp.
543
549
.
32.
Bonacina
,
C.
,
Comini
,
G.
,
Fasano
,
A.
, and
Primicerio
,
M.
, 1974, “
On the Estimation of Thermophysical Properties in Nonlinear Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
0017-9310,
17
, pp.
861
867
.
33.
Ozisik
,
M. N.
, 1968,
Boundary Value Problems of Heat Conduction
,
International Textbook
,
Scranton, PA
.
34.
Magalov
,
Z.
, 2005, “
Investigation of the Temperature Field Developed by Simultaneously Operating Cryosurgical Probes Embedded in a Phase-Changing Medium
,” M.S. thesis, Technion, Israel Institute of Technology, Haifa, Israel.
35.
Ozisik
,
M. N.
, 1993,
Heat Conduction
,
Wiley
,
New York
, pp.
392
436
.
You do not currently have access to this content.