Chaotic advection in the eccentric helical annular heat exchanger is investigated as a means to enhance its thermal efficiency. Chaotic streak lines are generated by steadily rotating one boundary while the other is counter-rotated with a time-periodic angular velocity. The effects of the eccentricity ratio and modulation frequency on the heat-transfer rate are analyzed by numerically solving the 3D convection-diffusion equation for a broad range of parameter values. For the frequency range over which chaotic advection can be effectively promoted, the efficiency of the heat exchanger is enhanced over that obtained for steady boundary rotation. Other tools, such as stretching field calculations and streak-line plots, applicable for dissipative dynamical systems, are implemented. These tools qualitatively confirm the quantitative heat-transfer results obtained.

1.
Kays
,
W. M.
, 1968,
Convective Heat Transfer
,
McGraw-Hill
,
New York
.
2.
Shah
,
R. K.
, 1978,
Laminar Flow Forced Convection in Ducts
,
Academic
,
New York
.
3.
Aref
,
H.
, 2002, “
The Development of Chaotic Advection
,”
Phys. Fluids
1070-6631,
14
, pp.
1315
1325
.
4.
Ottino
,
J. M.
, 1989,
The Kinematics of Mixing: Stretching, Chaos and Transport
,
Cambridge University Press
,
Cambridge
.
5.
Kusch
,
H. A.
, and
Ottino
,
J. M.
, 1992, “
Experiments on Mixing in Continuous Chaotic Flows
,”
J. Fluid Mech.
0022-1120,
236
, pp.
319
342
.
6.
Rodrigo
,
A. J. S.
,
Mota
,
J. P. B.
,
Lefèvre
,
A.
, and
Saatdjian
,
E.
, 2003, “
On the Optimization of Mixing Protocol in a Certain Class of 3-D Stokes Flows
,”
Phys. Fluids
1070-6631,
15
, pp.
1505
1515
.
7.
Lefèvre
,
A.
,
Leprévost
,
J. C.
,
Mota
,
J. P. B.
,
Rodrigo
,
A. J. S.
, and
Saatdjian
,
E.
, 2003, “
Chaotic Advection in a 3-D Stokes Flow
,”
AIChE J.
0001-1541,
29
, pp.
2749
2758
.
8.
Rodrigo
,
A. J. S.
,
Rodrigues
,
R. C. R.
,
Formiga
,
N. F. C.
,
Mota
,
J. P. B.
, and
Saatdjian
,
E.
, 2006, “
Mixing Enhancement by Frequency-Selective Chaotic Advection in a 3-D Time-Periodic Stokes Flow
,”
Chem. Eng. Commun.
0098-6445,
193
, pp.
743
753
.
9.
Saatdjian
,
E.
,
Midoux
,
N.
, and
Andre
,
J. C.
, 1994, “
On the Solution of Stokes Equations Between Confocal Ellipses
,”
Phys. Fluids
1070-6631,
6
, pp.
3833
3846
.
10.
Snyder
,
W. T.
, and
Goldstein
,
G. A.
, 1965, “
An Analysis of Fully Developed Laminar Flow in an Eccentric Annulus
,”
AIChE J.
0001-1541,
11
, pp.
762
767
.
11.
Aref
,
H.
, and
Balanchandar
,
A.
, 1986, “
Chaotic Advection in a Stokes Flow
,”
Phys. Fluids
0031-9171,
29
, pp.
3515
3521
.
12.
Chaiken
,
J.
,
Chevray
,
R.
,
Tabor
,
M.
, and
Tan
,
Q. M.
, 1986, “
Experimental Study of Lagrangian Turbulence in a Stokes Flow
,”
Proc. R. Soc. London, Ser. A
1364-5021,
408
, pp.
165
174
.
13.
Kaper
,
T. J.
, and
Wiggins
,
S.
, 1993, “
An Analytical Study of Transport in Stokes Flows Exhibiting Large-Scale Chaos in the Eccentric Journal Bearing
,”
J. Fluid Mech.
0022-1120,
253
, pp.
211
243
.
14.
Swanson
,
P. D.
, and
Ottino
,
J. M.
, 1990, “
A Comparative Computational and Experimental Study of Chaotic Mixing in Viscous Fluids
,”
J. Fluid Mech.
0022-1120,
213
, pp.
227
249
.
You do not currently have access to this content.