This paper presents numerical results exploring the periodically repeating laminar flow thermal transport in a parallel-plate microchannel with ultrahydrophobic walls maintained at constant temperature. The walls considered here exhibit alternating microribs and cavities positioned perpendicular to the flow direction. Results describing the thermally periodically repeating dynamics far from the inlet of the channel have been obtained over a range of laminar flow Reynolds numbers and relative microrib/cavity module lengths and depths in the laminar flow regime. Previously, it has been shown that significant reductions in the overall frictional pressure drop can be achieved relative to the classical smooth channel laminar flow. The present predictions reveal that the overall thermal transport is also reduced as the relative size of the cavity region is increased. The overall Nusselt number behavior is presented and discussed in conjunction with the frictional pressure drop behavior for the parameter range explored. The following conclusions can be made regarding thermal transport for a constant temperature channel exhibiting ultrahydrophobic surfaces: (1) Increases in the relative cavity length yield decreases in the Nusselt number, (2) increasing the relative rib/cavity module length yields a decrease in the Nusselt number, and (3) decreases in the Reynolds number result in smaller values of the Nusselt number.

1.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Yarin
,
L. P.
, 2005, “
Fluid Flow in Micro-Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1982
1998
.
2.
Thompson
,
B. R.
,
Maynes
,
D.
, and
Webb
,
B. W.
, 2005, “
Characterization of the Re-Entrant Developing Flow in a Microtube Using MTV
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
1003
1012
.
3.
Baviere
,
R.
,
Ayela
,
F.
,
Le Person
,
S.
, and
Favre-Marinet
,
M.
, 2005, “
Experimental Characterization of Water Flow Through Smooth Rectangular Microchannels
,”
Phys. Fluids
1070-6631,
17
, p.
098105
.
4.
Sharp
,
K. V.
, and
Adrian
,
R. J.
, 2004, “
Transition From Laminar to Turbulent Flow in Liquid Filled Microtubes
,”
Exp. Fluids
0723-4864,
36
, pp.
741
747
.
5.
Rands
,
C.
,
Webb
,
B. W.
, and
Maynes
,
D.
, 2006, “
Characterization of Transition to Turbulence in Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
2924
2930
.
6.
Judy
,
J.
,
Maynes
,
D.
, and
Webb
,
B. W.
, 2002, “
Characterization of Frictional Pressure Drop for Liquid Flows Through Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3477
3489
.
7.
Ou
,
J.
,
Perot
,
B.
, and
Rothstein
,
J. P.
, 2004, “
Laminar Drag Reduction in Microchannels Using Ultrahydrophobic Surfaces
,”
Phys. Fluids
1070-6631,
16
, pp.
4635
4643
.
8.
Ou
,
J.
, and
Rothstein
,
J. P.
, 2005, “
Direct Velocity Measurements of the Flow Past Drag-Reducing Ultra-Hydrophobic Surfaces
,”
Phys. Fluids
1070-6631,
17
, p.
103606
.
9.
Maynes
,
D.
,
Jeffs
,
K.
,
Woolford
,
B.
, and
Webb
,
B. W.
, 2005, “
Laminar Flow in a Microchannel With Hydrophobic Surface Patterned Microribs Oriented Parallel to the Flow Direction
,”
Phys. Fluids
1070-6631
19
, p.
093603
.
10.
Gogte
,
S.
,
Vorobieff
,
P.
,
Truesdell
,
R.
,
Mammoli
,
A.
,
van Swol
,
F.
,
Shah
,
P.
, and
Brinker
,
C. J.
, 2005, “
Effective Slip on Textured Superhydrophobic Surfaces
,”
Phys. Fluids
1070-6631,
17
, p.
051701
.
11.
Watanabe
,
K.
,
Takayama
,
T.
,
Ogata
,
S.
, and
Isozaki
,
S.
, 2003, “
Flow Between Two Coaxial Rotating Cylinders With a Highly Water-Repellent Wall
,”
AIChE J.
0001-1541,
49
, pp.
1956
1963
.
12.
Watanabe
,
K.
,
Udagawa
,
Y.
, and
Udagawa
,
H.
, 1999, “
Drag Reduction of Newtonian Fluid in a Circular Pipe With a Highly Water-Repellent Wall
,”
J. Fluid Mech.
0022-1120,
381
, pp.
225
238
.
13.
Davies
,
J.
,
Maynes
,
D.
,
Webb
,
B. W.
, and
Woolford
,
B.
, 2006, “
Laminar Flow in a Microchannel With Super-Hydrophobic Walls Exhibiting Transverse Ribs
,”
Phys. Fluids
1070-6631,
18
, p.
087110
.
14.
Oner
,
D.
, and
McCarthy
,
T. J.
, 2000, “
Ultrahydrophobic Surfaces: Effects of Topography Length Scales on Wettability
,”
Langmuir
0743-7463,
16
, pp.
7777
7782
.
15.
Torkkeli
,
A.
,
Saarilahti
,
J.
,
Haara
,
A.
,
Harma
,
H.
,
Soukka
,
T.
, and
Tolonen
,
P.
, 2001, “
Electrostatic Transportation of Water Droplets on Superhydrophobic Surfaces
,”
Proceedings of the IEEE MEMS 2001 Conference
, pp.
475
478
.
16.
Kim
,
J.
, and
Kim
,
C.-J.
, “
Nanostructured Surfaces for Dramatic Reduction of Flow Resistance in Droplet-Based Microfluidics
,”
Proceedings of the IEEE MEMS 2002 Conference
,
Las Vegas, NV
, pp.
479
482
.
17.
Chen
,
W.
,
Fadeev
,
A. Y.
,
Hsieh
,
M. C.
,
Oner
,
D.
,
Youngblood
,
J.
, and
McCarthy
,
J. T.
, 1999, “
Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples
,”
Langmuir
0743-7463,
15
, pp.
3395
3399
.
18.
Youngblood
,
J. P.
, and
McCarthy
,
T. J.
, 1999, “
Ultrahydrophobic Polymer Surfaces Prepared by Simultaneous Ablation of Polypropylene and Sputtering of Poly(terafluoroethylene) Using Radio Frequency Plasma
,”
Macromolecules
0024-9297,
32
, pp.
6800
6806
.
19.
Bico
,
J.
,
Thiele
,
U.
, and
Quere
,
D.
, 2002, “
Wetting of Textured Surfaces
,”
Colloids Surf., A
0927-7757,
206
, pp.
41
46
.
20.
Philip
,
J. R.
, 1972, “
Flows Satisfying Mixed No-Slip and No-Shear Conditions
,”
Z. Angew. Math. Phys.
0044-2275,
23
, pp.
353
371
.
21.
Lauga
,
E.
, and
Stone
,
H.
, 2001, “
Effective Slip in Pressure-Driven Stokes Flow
,”
J. Fluid Mech.
0022-1120,
489
, pp.
55
77
.
22.
Cottin-Bizonne
,
C.
,
Barentin
,
C.
,
Charlaix
,
E.
,
Bocquet
,
L.
, and
Barrat
,
J.-L.
, 2004, “
Dynamics of Simple Liquids at Heterogeneous Surfaces: Molecular-Dynamics Simulations and Hydrodynamic Description
,”
Eur. Phys. J. E
1292-8941,
15
, pp.
472
438
.
23.
Benzi
,
R.
,
Biferale
,
L.
,
Sbragaglia
,
M.
,
Succi
,
S.
, and
Toschi
,
F.
, 2006, “
Mesoscopic Modeling of Heterogeneous Boundary Conditions for Microchannel Flows
,”
J. Fluid Mech.
0022-1120,
548
, pp.
257
280
.
24.
Enright
,
R.
,
Eason
,
C.
,
Dalton
,
T.
,
Hodes
,
M.
,
Salamon
,
T.
,
Kolodner
,
P.
, and
Krupenkin
,
T.
, 2006, “
Friction Factors and Nusselt Numbers in Microchannels With Superhydrophobic Walls
,” ASME Paper No. ICNMM2006-96134.
25.
Panton
,
R. L.
, 2005,
Incompressible Flow
, 3rd ed.,
Wiley
,
New York
.
26.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer
,
Hemisphere
,
New York
.
27.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
, 2002,
Fundamentals of Heat and Mass Transfer
, 5th ed.,
Wiley
,
New York
.
28.
Fluent 6.2 Users Guide, Fluent Inc., Jan. 4, 2005.
29.
Davies
,
J.
, 2006, “
Analysis of Viscous Drag Reduction and Thermal Transport Effects for Microengineered Ultrahydrophobic Surfaces
,” MS thesis, Brigham Young University, Provo, UT.
You do not currently have access to this content.