The modeling of recirculation patterns in air-cooled data centers is of interest to ensure adequate thermal management of computer racks at increased heat densities. Most metrics that describe recirculation are based exclusively on temperature inside the data center, and therefore fail to provide adequate information regarding the energy efficiency of the thermal infrastructure. This paper addresses this limitation through an exergy analysis of the data center thermal management system. The approach recognizes that the mixing of hot and cold streams in the data center airspace is an irreversible process and must therefore lead to a loss of exergy. Experimental validation in a test data center confirms that such an exergy-based characterization in the cold aisle reflects the same recirculation trends as suggested by traditional temperature-based metrics. Further, by extending the exergy-based model to include irreversibilities from other components of the thermal architecture, it becomes possible to quantify the amount of available energy supplied to the cooling system that is being utilized for thermal management purposes. The energy efficiency of the entire data center cooling system can then be collapsed into the single metric of net exergy loss. When evaluated against a ground state of the external ambience, this metric enables an estimate of how much of the energy emitted into the environment could potentially be harnessed in the form of useful work. Thus, this paper successfully demonstrates that the proposed exergy-based approach can provide a foundation upon which the data center cooling system can be simultaneously evaluated for thermal manageability and energy efficiency.

1.
Patel
,
C. D.
,
Bash
,
C. E.
,
Sharma
,
R.
,
Beitelmal
,
A.
, and
Malone
,
C. G.
, 2005, “
Smart Chip, System and Data Center Enabled by Advanced Flexible Cooling Resources
,”
Proceedings of the IEEE Semiconductor Thermal Management and Measurement Symposium (SEMITHERM)
,
San Jose, CA
.
2.
Patel
,
C. D.
,
Sharma
,
R. K.
,
Bash
,
C. E.
, and
Beitelmal
,
A.
, 2002, “
Thermal Considerations in Cooling Large Scale High Computer Density Data Centers
,”
Proceedings of the Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM)
,
San Diego, CA
.
3.
Patel
,
C. D.
, and
Shah
,
A. J.
, 2005, “
Cost Model for Planning, Development and Operation of a Data Center
,” Hewlett Packard Laboratories, Palo Alto, CA, Technical Report No. HPL-2005-107R1.
4.
Sullivan
,
R. F.
, 2003, “
Alternating Cold and Hot Aisles Provides More Reliable Cooling for Server Farms
,” White Paper by The Uptime Institute, Santa Fe, NM.
5.
American Power Conversion
, 2003, “
Avoidable Mistakes that Compromise Cooling Performance in Data Centers and Network Rooms
,” White Paper 49 by American Power Conversion, Washington, DC.
6.
ASHRAE
, 2004,
Thermal Guidelines for Data Processing Environments
, Atlanta, GA.
7.
Shrivastava
,
S.
,
Sammakia
,
B.
,
Schmidt
,
R.
, and
Iyengar
,
M.
, 2005, “
Comparative Analysis of Different Data Center Airflow Management Configurations
,”
Proceedings of the ASME International Electronic Packaging Technical Conference and Exhibition (InterPACK)
,
San Francisco, CA
, Paper No. IPACK2005-73234.
8.
Iyengar
,
M.
,
Schmidt
,
R.
,
Sharma
,
A.
,
McVicker
,
G.
,
Shrivastava
,
S.
,
Sri-Jayantha
,
S.
,
Amemiya
,
Y.
,
Dang
,
H.
,
Chainer
,
T.
, and
Sammakia
,
B.
, 2005, “
Thermal Characterization of Non-Raised Floor Air Cooled Data Centers Using Numerical Modeling
,”
Proceedings of the Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition (InterPACK)
,
San Francisco, CA
, Paper No. IPACK2005-73387.
9.
Wang
,
D.
, 2004, “
A Passive Solution to a Difficult Data Center Problem
,”
Proceedings of the Intersociety Conference on Thermal and Thermomechanical Phenomena (ITHERM)
,
San Diego, CA
, pp.
586
592
.
10.
Heydari
,
A.
, and
Sabounchi
,
P.
, 2004, “
Refrigeration Assisted Spot Cooling of a High Heat Density Data Center
,”
Proceedings of the Intersociety Conference on Thermal and Thermomechanical Phenomena (ITHERM)
,
San Diego, CA
, pp.
601
606
.
11.
Schmidt
,
R.
,
Chu
,
R.
,
Ellsworth
,
M.
,
Iyengar
,
M.
,
Porter
,
D.
,
Kamath
,
V.
, and
Lehmann
,
B.
, 2005, “
Maintaining Datacom Rack Inlet Air Temperatures With Water Cooled Heat Exchangers
,”
Proceedings of the ASME International Electronic Packaging Technical Conference and Exhibition (InterPACK)
,
San Francisco, CA
.
12.
Kang
,
S.
,
Schmidt
,
R. R.
,
Kelkar
,
K. M.
,
Radmehr
,
A.
, and
Patankar
,
S. V.
, 2000, “
A Methodology for the Design of Perforated Tiles in a Raised Floor Data Center Using Computational Flow Analysis
,”
Proceedings of the Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM)
,
Las Vegas, NV
.
13.
Patel
,
C. D.
,
Bash
,
C. E.
,
Belady
,
C.
,
Stahl
,
L.
, and
Sullivan
,
D.
, 2001, “
Computational Fluid Dynamics Modeling of High Compute Density Data Centers to Assure System Inlet Air Specifications
,”
Proceedings of the Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition (InterPACK)
,
Kauai, HI
.
14.
Schmidt
,
R.
, 2001, “
Effect of Data Center Characteristics on Data Processing Equipment Inlet Temperatures
,”
Proceedings of the Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition (InterPACK)
,
Kauai, HI
, Paper No. IPACK2001-15870.
15.
VanGilder
,
J. W.
, and
Lee
,
T.
, 2003, “
A Hybrid Flow Network-CFD Method for Achieving Any Desired Flow Partitioning Through Floor Tiles of a Raised-Floor Data Center
,”
Proceedings of the International Electronic Packaging Technical Conference and Exhibition (InterPACK)
,
Maui, HI
, Paper No. IPACK2003-35171.
16.
Schmidt
,
R.
,
Karki
,
K.
, and
Patankar
,
S.
, 2004, “
Raised-Floor Data Center: Perforated Tile Flow Rates for Various Tile Layouts
,”
Proceedings of the Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM)
,
Las Vegas, NV
.
17.
Karki
,
K. C.
,
Radmehr
,
A.
, and
Patankar
,
S. V.
, 2003, “
Use of Computational Fluid Dynamics for Calculating Flow Rates Through Perforated Tiles in Raised-Floor Data Centers
,”
HVAC&R Res.
1078-9669,
9
(
2
), pp.
153
166
.
18.
Karki
,
K. C.
,
Patankar
,
S. V.
, and
Radmehr
,
A.
, 2003, “
Techniques for Controlling Airflow Distribution in Raised Floor Data Centers
,”
Proceedings of the Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition (InterPACK)
,
Maui, HI
, Paper No. IPACK2003-35282.
19.
VanGilder
,
J. W.
, and
Schmidt
,
R. R.
, 2005, “
Airflow Uniformity Through Perforated Tiles in a Raised Floor Data Center
,”
Proceedings of the Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition (InterPACK)
,
San Francisco, CA
, Paper No. IPACK2005-73375.
20.
Radmehr
,
A.
,
Schmidt
,
R. R.
,
Karki
,
K. C.
, and
Patankar
,
S. V.
, 2005, “
Distributed Leakage Flow in Raised Floor Data Centers
,”
Proceedings of the Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition (InterPACK)
,
San Francisco, CA
, Paper No. IPACK2005-73273.
21.
Rambo
,
J. D.
, and
Joshi
,
Y. K.
, 2004, “
Supply Air Distribution From a Single Air Handling Unit in a Raised Floor Plenum Data Center
,”
Proceedings of the Joint Indian Society of Heat and Mass Transfer/American Society of Mechanical Engineers Heat and Mass Transfer Conference (ISHMT/ASME)
,
Kalpakkam, India
.
22.
Sharma
,
R. K.
,
Bash
,
C. E.
,
Patel
,
C. D.
,
Friedrich
,
R. J.
, and
Chase
,
J. S.
, 2003, “
Balance of Power: Dynamic Thermal Management of Internet Data Centers
,” Hewlett Packard Laboratories, Palo Alto CA, Technical Report No. HPL-2003-5.
23.
Bhopte
,
S.
,
Agonafer
,
D.
,
Schmidt
,
R.
, and
Sammakia
,
B.
, 2005, “
Optimization of Data Center Room Layout to Minimize Rack Inlet Air Temperature
,”
Proceedings of the Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition (InterPACK)
,
San Francisco, CA
, Paper No. IPACK2005-73027.
24.
Schmidt
,
R.
, and
Iyengar
,
M.
, 2005, “
Effect of Data Center Layout on Rack Inlet Air Temperatures
,”
Proceedings of the Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition (InterPACK)
,
San Francisco, CA
, Paper No. IPACK2005-73385.
25.
Schmidt
,
R.
, and
Cruz
,
E.
, 2002, “
Raised Floor Computer Data Center: Effect on Rack Inlet Temperatures of Chilled Air Exiting Both the Hot and Cold Aisles
,”
Proceedings of the Intersociety Conference on Thermal and Thermomechanical Phenomena (ITHERM)
,
San Diego, CA
, pp.
580
594
.
26.
Schmidt
,
R.
, and
Cruz
,
E.
, 2002, “
Raised Floor Computer Data Center: Effect on Rack Inlet Temperatures When High Powered Racks are Situated Amongst Lower Powered Racks
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition (IMECE)
,
New Orleans, LA
.
27.
Schmidt
,
R.
, and
Cruz
,
E.
, 2003, “
Cluster of High Powered Racks Within a Raised Floor Computer Data Center: Effect of Perforated Tile Flow Distribution on Rack Inlet Air Temperatures
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition (IMECE)
,
Washington, DC
, pp.
245
262
.
28.
Schmidt
,
R.
, and
Cruz
,
E.
, 2003, “
Raised Floor Computer Data Center: Effect on Rack Inlet Temperatures when Adjacent Racks are Removed
,”
Proceedings of the Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition (InterPACK)
,
Maui, HI
.
29.
Bash
,
C. E.
,
Patel
,
C.
, and
Sharma
,
R. K.
, 2003, “
Efficient Thermal Management of Data Centers—Immediate and Long-Term Research Needs
,”
HVAC&R Res.
1078-9669,
9
(
2
), pp.
137
152
.
30.
Sharma
,
R. K.
,
Bash
,
C. E.
, and
Patel
,
C. D.
, 2002, “
Dimensionless Parameters for Evaluation of Thermal Design and Performance of Large-Scale Data Centers
,”
Proceedings of The Eighth ASME/AIAA Joint Thermophysics and Heat Transfer Conference
,
St Louis, MO
.
31.
Sharma
,
R. K.
, and
Bash
,
C. E.
, 2002, “
Dimensionless Parameters for Energy-Efficient Data Center Design
,”
Proceedings of the IMAPS Advanced Technology Workshop on Thermal Management (THERM ATW)
,
Palo Alto, CA
.
32.
Schmidt
,
R. R.
,
Cruz
,
E. E.
, and
Iyengar
,
M. K.
, 2005, “
Challenges of Data Center Thermal Management
,”
IBM J. Res. Dev.
0018-8646,
49
(
4/5
), pp.
709
723
.
33.
Schmidt
,
R.
,
Iyengar
,
M.
, and
Chu
,
R.
, 2005, “
Meeting Data Center Temperature Requirements
,”
ASHRAE J.
0001-2491,
47
(
4
), pp.
44
49
.
34.
Herrlin
,
M. K.
, 2005, “
Rack Cooling Effectiveness in Data Centers and Telecom Central Offices: The Rack Cooling Index (RCI)
,”
ASHRAE Trans.
0001-2505,
111
(
2
), pp.
725
731
.
35.
Aebischer
,
B.
,
Eubank
,
H.
, and
Tschudi
,
W.
, 2004, “
Energy Efficiency Indicators for Data Centers
,”
International Conference on Improving Energy Efficiency in Commercial Buildings
,
Frankfurt, Germany
.
36.
Norota
,
M.
,
Hayama
,
H.
,
Enai
,
M.
, and
Kishita
,
M.
, 2003, “
Research on Efficiency of Air Conditioning System for Data Center
,”
Proceedings of the IEEE International Telecommunications Energy Conference (INTELEC)
,
Yokohama, Japan
, pp.
147
151
.
37.
Mitchell-Jackson
,
J.
,
Koomey
,
J. G.
,
Nordman
,
B.
, and
Blazek
,
M.
, 2001, “
Data Center Power Requirements: Measurements From Silicon Valley
,”
Energy-The International Journal
,
28
(
8
), pp.
837
850
.
38.
Bejan
,
A.
, 1997,
Advanced Engineering Thermodynamics
, 2nd ed.,
Wiley
,
New York
.
39.
Çengel
,
Y. A.
, and
Boles
,
M. A.
, 2001,
Thermodynamics: An Engineering Approach
, 4th ed.,
McGraw-Hill
,
Hightstown, NJ
.
40.
Moran
,
M. J.
, 1982,
Availability Analysis: A Guide to Efficient Energy Use
,
Prentice-Hall Inc.
,
Englewood Cliffs, NJ
.
41.
Szargut
,
J.
,
Morris
,
D. R.
, and
Steward
,
F. R.
, 1988,
Exergy Analysis of Thermal, Chemical and Metallurgical Processes
,
Hemisphere
,
New York
.
42.
Creyts
,
J. C.
,
Carey
,
V. P.
, 1999, “
Use of Extended Exergy Analysis to Evaluate the Environmental Performance of Machining Processes
,”
Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng.
,
213
(
4
), pp.
247
264
.
43.
Carey
,
V. P.
, and
Shah
,
A. J.
, 2006, “
The Exergy Cost of Information Processing—A Comparison of Computer-Based Technologies and Biological Systems
,”
ASME J. Electron. Packag.
1043-7398,
128
(
4
), pp.
346
352
.
44.
Bejan
,
A. D.
, 1996,
Entropy Generation Minimization
,
Wiley
,
New York
, pp.
104
109
.
45.
Lin
,
W. W.
, and
Lee
,
D. J.
, 2000, “
Second Law Analysis on a Flat Plate-Fin Array Under Crossflow
,”
Int. Commun. Heat Mass Transfer
0735-1933,
27
(
2
), pp.
179
190
.
46.
Culham
,
J. R.
, and
Muzychka
,
Y. S.
, 2001, “
Optimization of Plate Fin Heat Sinks Using Entropy Generation Minimization
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
24
, pp.
159
165
.
47.
Ogiso
,
K.
, 2001, “
Assessment of Overall Cooling Performance in Thermal Design of Electronics Based on Thermodynamics
,”
ASME J. Heat Transfer
0022-1481,
123
(
5
), pp.
999
1005
.
48.
Bar-Cohen
,
A.
, and
Iyengar
,
M.
, 2003, “
Least-Energy Optimization of Air-Cooled Heat Sinks for Sustainable Development
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
26
(
1
), pp.
16
25
.
49.
FLOVENT vx.1, Software by Flomerics Ltd., 81 Bridge Road, Hampton Court, Surrey KT8 9HH, England, available http://www.flomerics.com/flovent/http://www.flomerics.com/flovent/
50.
Shah
,
A. J.
, 2005, “
Exergy-Based Analysis of Computer Thermal Management Systems
,” Ph.D. thesis, University of California, Berkeley.
51.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
7
.
52.
Rolander
,
N.
,
Rambo
,
J.
,
Joshi
,
Y.
, and
Mistree
,
Y.
, 2005, “
Robust Design of Air Cooled Server Cabinets for Thermal Efficiency
,”
Proceedings of the ASME International Electronic Packaging Technical Conference and Exhibition (InterPACK)
,
San Francisco, CA
, Paper No. IPACK2005-73171.
53.
Rambo
,
J.
, and
Joshi
,
Y.
, 2005, “
Thermal Performance Metrics for Arranging Forced Air Cooled Servers in a Data Processing Cabinet
,”
ASME J. Electron. Packag.
1043-7398,
127
(
4
), pp.
452
459
.
54.
Shah
,
A. J.
,
Carey
,
V. P.
,
Bash
,
C. E.
, and
Patel
,
C. D.
, 2006, “
An Exergy-Based Figure of Merit for Electronic Packages
,”
ASME J. Electron. Packag.
1043-7398,
128
(
4
), pp.
360
369
.
You do not currently have access to this content.