Accurate particle sizing through time-resolved laser-induced incandescence (TR-LII) requires knowledge of the thermal accommodation coefficient, but the underlying physics of this parameter is poorly understood. If the particle size is known a priori, however, TR-LII data can instead be used to infer the thermal accommodation coefficient. Thermal accommodation coefficients measured between soot and different monatomic and polyatomic gases show that the accommodation coefficient increases with molecular mass for monatomic gases and is lower for polyatomic gases. This latter result indicates that surface energy is accommodated preferentially into translational modes over internal modes for these gases.

1.
Jackobson
,
M. Z.
, 2004, “
Climate Response of Fossil Fuel and Biofuel Soot, Accounting for Soot’s Feedback to Snow and Sea Ice Albedo and Emissivity
,”
J. Geophys. Res.
0148-0227,
109
, p.
D21201
.
2.
Streets
,
D. G.
,
Wu
,
Y.
, and
Chin
,
M.
, 2006, “
Two-Decadal Aerosol Trends as a Likely Explanation of the Global Dimming/Brightening Transition
,”
Geophys. Res. Lett.
0094-8276,
33
, pp.
L15806
.
3.
Maynard
,
A. D.
, and
Kuempel
,
E. D.
, 2005, “
Airborne Nanostructured Particles and Occupational Health
,”
J. Nanopart. Res.
1388-0764,
7
, pp.
587
614
.
4.
Oberdörster
,
G.
,
Oberdörster
,
E.
, and
Oberdörster
,
J.
, 2005, “
Nanotoxicology: An Emerging Discipline Evolving From Studies of Ultrafine Particles
,”
Environ. Health Perspect.
0091-6765,
113
, pp.
823
839
.
5.
Baukal
,
C. E.
, Jr.
, 2000,
Heat Transfer in Industrial Combustion
,
CRC
,
Boca Raton, FL
.
6.
United States Department of Energy Office of Industrial Technologies, 2002, Industrial Combustion Technology Roadmap: A Technology Roadmap by and for the Industrial Combustion Community, U.S. DOE:OIT, Washington, DC.
7.
Grandqvist
,
C.
,
Kish
,
L.
, and
Marlow
,
W.
, 2004,
Gas Phase Nanoparticle Synthesis
,
Kluwer, Dordrecht
,
The Netherlands
.
8.
Melton
,
L. A.
, 1984, “
Soot Diagnostics Based on Laser Heating
,”
Appl. Opt.
0003-6935,
13
, pp.
2201
2208
.
9.
Will
,
S.
,
Schraml
,
S.
, and
Leipertz
,
A.
, 1995, “
Two-Dimensional Soot-Particle Sizing by Time-Resolved Laser-Induced Incandescence
,”
Opt. Lett.
0146-9592,
20
, pp.
2342
2344
.
10.
Filippov
,
A. V.
, and
Roth
,
P.
, 1996, “
In Situ Ultrafine Perticle Sizing by a Combination of Pulsed Laser Heatup and Particle Thermal Emission
,”
J. Aerosol Sci.
0021-8502,
27
, pp.
95
104
.
11.
Mewes
,
B.
, and
Seitzman
,
J. M.
, 1997, “
Soot Volume Fraction and Particle Size Measurements With Laser-Induced Incandescence
,”
Appl. Opt.
0003-6935,
36
, pp.
709
717
.
12.
Lehre
,
T.
,
Jungfleisch
,
B.
,
Suntz
,
R.
, and
Bockhorn
,
H.
, 2003, “
Size Distributions of Nanoscaled Particles and Gas Temperatures from Time-Resolved Laser-Induced-Incandescence Measurements
,”
Appl. Opt.
0003-6935,
42
, pp.
2021
2029
.
13.
Starke
,
R.
,
Kock
,
B.
, and
Roth
,
P.
, 2003, “
Nano-Particle Sizing by Laser-Induced Incandescence (LII) in a Shock Wave Reactor
,”
Shock Waves
0938-1287,
12
, pp.
351
360
.
14.
Dankers
,
S.
, and
Leipertz
,
A.
, 2004, “
Determination of Primary Particle Size Distributions From Time-Resolved Laser-Induced Incandescence Measurements
,”
Appl. Opt.
0003-6935,
43
, pp.
3726
3131
.
15.
Kuhlmann
,
S.-A.
,
Schumacher
,
J.
,
Reimann
,
J.
, and
Will
,
S.
, 2004, “
Evaluation and Improvement of Laser-Induced Incandescence for Nanoparticle Sizing
,”
Proceedings of PARTEC
,
Nuremburg
,
Germany
, Mar
16
18
.
16.
Kock
,
B. F.
,
Kayan
,
C.
,
Knipping
,
J.
,
Orthner
,
H. R.
, and
Roth
,
P.
, 2005, “
Comparison of LII and TEM Sizing During Synthesis of Iron Particle Chains
,”
Proc. Combust. Inst.
1540-7489,
30
, pp.
1689
1697
.
17.
Eremin
,
A. V.
,
Gurentsov
,
E. V.
,
Hofmann
,
M.
,
Kock
,
B. F.
, and
Schulz
,
C.
, 2006, “
TR-LII for Sizing of Carbon Particles Forming at Room Temperature
,”
Appl. Phys. B: Lasers Opt.
0946-2171,
83
, pp.
449
454
.
18.
Liu
,
F.
,
Stagg
,
B. J.
,
Snelling
,
D. R.
, and
Smallwood
,
G. J.
, 2006, “
Effects of Primary Soot Particle Size Distribution on the Temperature of Soot Particles Heated by a Nanosecond Pulsed Laser in an Atmospheric Laminar Diffusion Flame
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
777
788
.
19.
Bougie
,
B.
,
Ganippa
,
L. C.
,
van Vilet
,
A. P.
,
Meerts
,
W. L.
,
Dam
,
N. J.
, and
ter Meulen
,
J. J.
, 2007, “
Soot Particulate Size Characterization in a Heavy-Duty Diesel Engine for Different Engine Loads by Laser-Induced Incandescence
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
685
691
.
20.
Gurentsov
,
E.
,
Eremin
,
A.
, and
Schulz
,
C.
, 2007, “
Formation of Carbon Nanoparticles by the Condensation of Supersaturated Atomic Vapor Obtained by the Laser Photolysis of C3O2
,”
Kinetics and Catalysts
,
48
,
194
203
.
21.
Maxwell
,
J. C.
, 1879, “
On Stresses in Rarefied Gases Arising from Inequalities of Temperature
,”
Philos. Trans. R. Soc. London
0370-2316,
170
, pp.
231
256
.
22.
Knudsen
,
M.
, 1911, “
Die Molekulare Wärmeleitung der Gase und der Akkommodationskoeffizient
,”
Ann. Phys.
0003-3804,
339
(
4
), pp.
593
656
.
23.
Snelling
,
D. R.
,
Liu
,
F.
,
Smallwood
,
G. J.
, and
Gulder
,
O. L.
, 2004, “
Determination of the Soot Absorption Function and Thermal Accommodation Coefficient Using Low-Fluence LII in a Laminar Coflow Ethylene Diffusion Flame
,”
Combust. Flame
0010-2180,
136
, pp.
180
190
.
24.
Kuhlmann
,
S.-A.
,
Reimann
,
J.
, and
Will
,
S.
, 2006, “
On Heat Conduction Between Laser-Heated Nanoparticles and a Surrounding Gas
,”
J. Aerosol Sci.
0021-8502,
37
, pp.
1696
1716
.
25.
Yasumoto
,
I.
, 1987, “
Accommodation Coefficients of Helium, Neon, Argon, Hydrogen, and Deuterium on Graphitized Carbon
,”
J. Phys. Chem.
0022-3654,
91
, pp.
4298
4301
.
26.
Saxena
,
S. C.
, and
Joshi
,
R. K.
, 1981,
Thermal Accommodation and Adsorption Coefficients of Gases
,
McGraw-Hill
,
New York
.
27.
Snelling
,
D. R.
,
Smallwood
,
G. J.
,
Liu
,
F.
,
Gülder
,
Ö. L.
, and
Bachalo
,
W. D.
, 2005, “
A Calibration-Independent Laser-Induced Incandescence Technique for Soot Measurement by Detecting Absolute Light Intensity
,”
Appl. Opt.
0003-6935,
44
, pp.
6773
6785
.
28.
Köylü
,
Ü. Ö.
, and
Faeth
,
G. M.
, 1992, “
Structure of Overfire Soot in Buoyant Turbulent Diffusion Flames at Long Residence Times
,”
Combust. Flame
0010-2180,
82
, pp.
140
156
.
29.
Megaridis
,
C. M.
, and
Dobbins
,
R. A.
, 1990, “
Morphological Description of Flame-Generated Soot
,”
Combust. Sci. Technol.
0010-2202,
71
, pp.
95
109
.
30.
Dobbins
,
R. A.
, and
Megaridis
,
C. M.
, 1987, “
Morphology of Flame-Generated Soot as Determined by Thermophoretic Sampling
,”
Langmuir
0743-7463,
3
, pp.
254
259
.
31.
Köylü
,
Ü. Ö.
,
McEnally
,
C. S.
,
Rosner
,
D. E.
, and
Pfefferle
,
L. D.
, 1997, “
Simultaneous Measurement of Soot Volume Fraction and Particle Size/Microstructure in Flames Using a Thermophoretic Sampling Technique
,”
Combust. Flame
0010-2180,
110
, pp.
494
507
.
32.
Tian
,
K.
,
Thomson
,
K. A.
,
Liu
,
F.
,
Snelling
,
D. R.
,
Smallwood
,
G. J.
, and
Wang
,
D.
, 2004, “
Distribution of the Number of Primary Particles of Soot Aggregates in a Nonpremixed Laminar Flame
,”
Combust. Flame
0010-2180,
138
, pp.
195
198
.
33.
Köylü
,
Ü. Ö.
,
Faeth
,
G. M.
,
Farias
,
T. L.
, and
Carvalho
,
M. G.
, 1995, “
Fractal and Projected Structure Properties of Soot Aggregates
,”
Combust. Flame
0010-2180,
100
, pp.
621
633
.
34.
Tian
,
K.
,
Thomson
,
K. A.
,
Liu
,
F.
,
Snelling
,
D. R.
,
Smallwood
,
G. J.
, and
Wang
,
D.
, 2004, “
Determination of the Morphology of Soot Aggregates Using the Relative Optical Density Method for the Analysis of TEM Images
,”
Combust. Flame
0010-2180,
144
, pp.
782
791
.
35.
Liu
,
F.
,
Yang
,
M.
,
Hill
,
F. A.
,
Snelling
,
D. R.
, and
Smallwood
,
G. J.
, 2006, “
Influence of Polydisperse Distribution of Both Primary Particle and Aggregate Size on Soot Temperature in Low-Fluence LII
,”
Appl. Phys. B: Lasers Opt.
0946-2171,
83
, pp.
383
395
.
36.
Michelsen
,
H. A.
,
Liu
,
F.
,
Kock
,
B. F.
,
Blandh
,
H.
,
Carwath
,
M.
,
Drier
,
T.
,
Hadef
,
R.
,
Hofmann
,
M.
,
Reimann
,
J.
Will
,
S.
,
Bengtsson
,
P.-E.
,
Bockhorn
,
H.
,
Foucher
,
F.
,
Geigle
,
K.-P.
,
Mounaïm-Rousselle
,
C.
,
Schulz
,
C.
,
Stirn
,
R.
,
Tribalet
,
B.
, and
Suntz
,
R.
, 2007, “
Modeling Laser-Induced Incandescence of Soot: A Summary and Comparison of LII Models
,”
Appl. Phys. B: Lasers Opt.
0946-2171,
87
, pp.
503
521
.
37.
Schulz
,
C.
,
Kock
,
B. F.
,
Hofmann
,
M.
,
Michelsen
,
H.
,
Will
,
S.
,
Bougie
,
B.
,
Suntz
,
R.
, and
Smallwood
,
G.
, 2006, “
Laser-Induced Incandescence: Recent Trends and Current Questions
,”
Appl. Phys. B: Lasers Opt.
0946-2171,
83
, pp.
333
354
.
38.
Michelsen
,
H. A.
, 2003, “
Understanding and Predicting the Temporal Response of Laser-Induced Incandescence From Carbonaceous Particles
,”
J. Chem. Phys.
0021-9606,
118
, pp.
7012
7045
.
39.
Vidali
,
G.
,
Ihm
,
G.
,
Kim
,
H. Y.
, and
Cole
,
M. W.
, 1991, “
Potentials of Physical Adsorption
,”
Surf. Sci. Rep.
0167-5729,
12
, pp.
133
181
.
40.
Yoder
,
G. D.
,
Diwakar
,
P. K.
, and
Hahn
,
D. W.
, 2005, “
Assessment of Soot Particle Vaporization Effects During Laser-Induced Incandescence With Time-Resolved Light Scattering
,”
Appl. Opt.
0003-6935,
44
, pp.
4211
4219
.
41.
Fried
,
L. E.
, and
Howard
,
W. M.
, 2000, “
Explicit Gibbs Free Energy Equation of State Applied to the Carbon Phase Diagram
,”
Phys. Rev. B
0163-1829,
61
, pp.
8734
8743
.
42.
McBride
,
B. J.
,
Gordon
,
S.
, and
Reno
,
M. A.
, 1993, “
Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species
,” NASA Office of Management, Washington, DC, NASA Technical Memorandum No. 4513.
43.
Burcat
,
A.
, and
Ruscic
,
B.
, 2005, “
Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion With Updates From Active Thermochemical Tables
,” Argonne National Laboratory Report No. ANL-05-20 and Technion Report No. TAE 960.
44.
Keestin
,
J.
,
Knierim
,
K.
,
Mason
,
E. A.
,
Najafi
,
B.
,
Ro
,
S. T.
, and
Waldman
,
M.
, 1984, “
Equilibrium and Transport Properties of the Noble Gases and Their Mixtures at Low Density
,”
J. Phys. Chem. Ref. Data
0047-2689,
13
, pp.
229
239
.
45.
Filippov
,
A. V.
and
Rosner
,
D. E.
, 2000, “
Energy Transfer Between an Aerosol Particle and Gas at High Temperature Ratios in the Knudsen Transition Regime
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
127
138
.
46.
Liu
,
F.
,
Daun
,
K. J.
,
Snelling
,
D. R.
, and
Smallwood
,
G. J.
, 2006, “
Heat Conduction From a Spherical Nano-Particle: Status of Modeling Heat Conduction in Laser-Induced Incandescence
,”
Appl. Phys. B: Lasers Opt.
0946-2171,
83
, pp.
355
382
.
47.
Goodman
,
F. O.
, 1974, “
Thermal Accommodation
,”
Prog. Surf. Sci.
0079-6816,
5
, pp.
261
375
.
48.
Gilbey
,
D. M.
, 1962, “
A Re-Examination of Thermal Accommodation Coefficient Theory
,”
J. Phys. Chem. Solids
0022-3697,
23
, pp.
1453
1461
.
49.
Trilling
,
L. M.
, 1970, “
The Interaction of Monatomic Inert Gas Molecules With a Continuous Elastic Solid
,”
Surf. Sci.
0039-6028,
21
, pp.
337
365
.
50.
Kennard
,
E. H.
, 1938,
Kinetic Theory of Gases
,
McGraw-Hill
,
New York
, pp.
311
327
.
51.
Andersson
,
M. B.
, and
Pettersson
,
J. B. C.
, 1996, “
Vibrational Excitation of SF6 Scattering From Graphite
,”
Chem. Phys. Lett.
0009-2614,
250
, pp.
555
559
.
52.
Andersson
,
M. B.
,
Pettersson
,
J. B. C.
, and
Marković
,
N.
, 1997, “
Vibrational Excitation of CF3Br Scattering From Graphite
,”
Surf. Sci. Lett.
0167-2584,
384
, pp.
L880
L885
.
53.
Blömer
,
J.
and
Beylich
,
A. E.
, 1999, “
Molecular Dynamics Simulation of Energy Accommodation of Internal and Translational Degrees of Freedom at Gas-Surface Interfaces
,”
Surf. Sci.
0039-6028,
423
, pp.
127
133
.
54.
Bird
,
G. A.
, 1994,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
,
Oxford University Press
,
Oxford, UK
, p.
28
.
55.
Filippov
,
A. V.
,
Markus
,
M. W.
, and
Roth
,
P.
, 1999, “
In-Situ Characterization of Ultrafine Particles by Laser-Induced Incandescence: Sizing and Particle Structure Determination
,”
J. Aerosol Sci.
0021-8502,
30
, pp.
71
87
.
56.
Williams
,
M. M. R.
, and
Loyalka
,
S. K.
, 1991,
Aerosol Science: Theory and Practice
,
Permagon
,
Oxford, UK
, pp.
308
309
.
You do not currently have access to this content.