This work describes the heat transfer process from a heated microcantilever to a substrate. A platinum-resistance thermometer with a 140nm width was fabricated on a SiO2-coated silicon substrate. The temperature coefficient of resistance estimated from the measurement was 7×104K1, about one-fifth of the bulk value of platinum. The temperature distribution on the substrate was obtained from the thermometer reading, as the cantilever raster scanned the substrate. Comparison between the measurement and calculation reveals that up to 75% of the cantilever power is directly transferred to the substrate through the air gap. From the force-displacement experiment, the effective tip-specimen contact thermal conductance was estimated to be around 40nWK. The findings from this study should help understand the thermal interaction between the heated cantilever and the substrate, which is essential to many nanoscale technologies using heated cantilevers.

1.
Binnig
,
G.
,
Despont
,
M.
,
Drechsler
,
U.
,
Haberle
,
W.
,
Lutwyche
,
M.
,
Vettiger
,
P.
,
Mamin
,
H. J.
,
Chui
,
B. W.
, and
Kenny
,
T. W.
, 1999, “
Ultrahigh-Density Atomic Force Microscopy Data Storage With Erase Capability
,”
Appl. Phys. Lett.
0003-6951,
74
, pp.
1329
1331
.
2.
Sheehan
,
P. E.
,
Whitman
,
L. J.
,
King
,
W. P.
, and
Brent
,
A. N.
, 2004, “
Nanoscale Deposition of Solid Inks via Thermal Dip Pen Nanolithography
,”
Appl. Phys. Lett.
0003-6951,
85
, pp.
1589
1591
.
3.
Nelson
,
B. A.
,
King
,
W. P.
,
Laracuente
,
A. R.
,
Sheehan
,
P. E.
, and
Whitman
,
L. J.
, 2006, “
Direct Deposition of Continuous Metal Nanostructures by Thermal Dip-Pen Nanolithography
,”
Appl. Phys. Lett.
0003-6951,
88
, p.
033104
.
4.
Szoszkiewicz
,
R.
,
Okada
,
T.
,
Jones
,
S. C.
,
Li
,
T. D.
,
King
,
W. P.
,
Marder
,
S. R.
, and
Riedo
,
E.
, 2007, “
High-Speed, Sub-15nm Feature Size Thermochemical Nanolithography
,”
Nano Lett.
1530-6984,
7
, pp.
1064
1069
.
5.
King
,
W. P.
,
Saxena
,
S.
,
Nelson
,
B. A.
,
Pitchimani
,
R.
, and
Weeks
,
B. L.
, 2006, “
Nanoscale Thermal Analysis of an Energetic Material
,”
Nano Lett.
1530-6984,
6
, pp.
2145
2149
.
6.
Nelson
,
B. A.
, and
King
,
W. P.
, 2007, “
Measuring Material Softening With Nanoscale Spatial Resolution Using Heated Silicon Probes
,”
Rev. Sci. Instrum.
0034-6748,
78
, p.
023702
.
7.
King
,
W. P.
,
Kenny
,
T. W.
, and
Goodson
,
K. E.
, 2004, “
Comparison of Thermal and Piezoresistive Sensing Approaches for Atomic Force Microscopy Topography Measurements
,”
Appl. Phys. Lett.
0003-6951,
85
, pp.
2086
2088
.
8.
Kim
,
K. J.
,
Park
,
K.
,
Lee
,
J.
,
Zhang
,
Z. M.
, and
King
,
W. P.
, 2007, “
Nanotopographical Imaging Using a Heated Atomic Force Microscope Cantilever Probe
,”
Sens. Actuators, A
0924-4247,
136
, pp.
95
103
.
9.
Park
,
K.
,
Lee
,
J.
,
Zhang
,
Z. M.
, and
King
,
W. P.
, 2007, “
Nanotopographical Imaging With a Heated Atomic Force Microscope Cantilever in Tapping Mode
,”
Rev. Sci. Instrum.
0034-6748,
78
, p.
043709
.
10.
Lee
,
J.
,
Beechem
,
T.
,
Wright
,
T. L.
,
Nelson
,
B. A.
,
Graham
,
S.
, and
King
,
W. P.
, 2006, “
Electrical, Thermal, and Mechanical Characterization of Silicon Microcantilever-Heaters
,”
J. Microelectromech. Syst.
1057-7157,
15
, pp.
1644
1655
.
11.
Park
,
K.
,
Lee
,
J.
,
Zhang
,
Z. M.
, and
King
,
W. P.
, 2007, “
Frequency-Dependent Electrical and Thermal Response of Heated Atomic Force Microscope Cantilevers
,”
J. Microelectromech. Syst.
1057-7157,
16
, pp.
213
222
.
12.
Lee
,
J.
,
Wright
,
T. L.
,
Abel
,
M. R.
,
Sunden
,
E. O.
,
Marchenkov
,
A.
,
Graham
,
S.
, and
King
,
W. P.
, 2007, “
Thermal Conduction From Microcantilever Heaters in Partial Vacuum
,”
J. Appl. Phys.
0021-8979,
101
, p.
014906
.
13.
Park
,
K.
,
Marchenkov
,
A.
,
Zhang
,
Z. M.
, and
King
,
W. P.
, 2007, “
Low Temperature Characterization of Heated Microcantilevers
,”
J. Appl. Phys.
0021-8979,
101
, p.
094504
.
14.
King
,
W. P.
,
Kenny
,
T. W.
,
Goodson
,
K. E.
,
Cross
,
G. L. W.
,
Despont
,
M.
,
Dürig
,
U. T.
,
Rothuizen
,
H.
,
Binnig
,
G.
, and
Vettiger
,
P.
, 2002, “
Design of Atomic Force Microscope Cantilevers for Combined Thermomechanical Writing and Thermal Reading in Array Operation
,”
J. Microelectromech. Syst.
1057-7157,
11
, pp.
765
774
.
15.
King
,
W. P.
, 2005, “
Design Analysis of Heated Atomic Force Microscope Cantilevers for Nanotopography Measurements
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
2441
2448
.
16.
Williams
,
C. C.
, and
Wickramasinghe
,
H. K.
, 1986, “
Scanning Thermal Profiler
,”
Appl. Phys. Lett.
0003-6951,
49
, pp.
1587
1589
.
17.
Luo
,
K.
,
Shi
,
Z.
,
Varesi
,
J.
, and
Majumdar
,
A.
, 1997, “
Sensor Nanofabrication, Performance, and Conduction Mechanisms in Scanning Thermal Microscopy
,”
J. Vac. Sci. Technol. B
0734-211X,
15
, pp.
349
360
.
18.
Muller-Hirsch
,
W.
,
Kraft
,
A.
,
Hirsch
,
M. T.
,
Parisi
,
J.
, and
Kittel
,
A.
, 1999, “
Heat Transfer in Ultrahigh Vacuum Scanning Thermal Microscopy
,”
J. Vac. Sci. Technol. A
0734-2101,
17
, pp.
1205
1210
.
19.
Shi
,
L.
,
Kwon
,
O.
,
Miner
,
A. C.
, and
Majumdar
,
A.
, 2001, “
Design and Batch Fabrication of Probes for Sub-100nm Scanning Thermal Microscopy
,”
J. Microelectromech. Syst.
1057-7157,
10
, pp.
370
378
.
20.
Lee
,
D. W.
,
Ono
,
T.
, and
Esashi
,
M.
, 2002, “
Fabrication of Thermal Microprobes With a Sub-100nm Metal-to-Metal Junction
,”
Nanotechnology
0957-4484,
13
, pp.
29
32
.
21.
Shi
,
L.
, and
Majumdar
,
A.
, 2002, “
Thermal Transport Mechanisms at Nanoscale Point Contacts
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
329
337
.
22.
Lefevre
,
S.
,
Volz
,
S.
, and
Chapuis
,
P. O.
, 2006, “
Nanoscale Heat Transfer at Contact Between a Hot Tip and a Substrate
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
251
258
.
23.
Chui
,
B. W.
,
Stowe
,
T. D.
,
Ju
,
Y. S.
,
Goodson
,
K. E.
,
Kenny
,
T. W.
,
Mamin
,
H. J.
,
Terris
,
B. D.
, and
Ried
,
R. P.
, 1998, “
Low-Stiffness Silicon Cantilever With Integrated Heaters and Piezoresistive Sensors for High-Density Data Storage
,”
J. Microelectromech. Syst.
1057-7157,
7
, pp.
69
78
.
24.
Chu
,
D.
,
Bilir
,
D. T.
,
Pease
,
R. F. W.
, and
Goodson
,
K. E.
, 2002, “
Submicron Thermocouple Measurements of Electron-Beam Resist Heating
,”
J. Vac. Sci. Technol. B
1071-1023,
20
, pp.
3044
3046
.
25.
Chu
,
D.
,
Wong
,
W.-K.
,
Goodson
,
K. E.
, and
Pease
,
R. F. W.
, 2003, “
Transient Temperature Measurements of Resist Heating Using Nanothermocouples
,”
J. Vac. Sci. Technol. B
1071-1023,
21
, pp.
2985
2989
.
26.
Marzi
,
G. D.
,
Iacopino
,
D.
,
Quinn
,
A. J.
, and
Redmond
,
G.
, 2004, “
Probing Intrinsic Transport Properties of Single Metal Nanowires: Direct-Write Contact Formation Using a Focused Ion Beam
,”
J. Appl. Phys.
0021-8979,
96
, pp.
3458
3462
.
27.
Chui
,
B. W.
,
Asheghi
,
M.
,
Ju
,
Y. S.
,
Goodson
,
K. E.
,
Kenny
,
T. W.
, and
Mamin
,
H. J.
, 1999, “
Intrinsic-Carrier Thermal Runaway in Silicon Microcantilevers
,”
Microscale Thermophys. Eng.
1089-3954,
3
, pp.
217
228
.
28.
Dürig
,
U.
, 2005, “
Fundamentals of Micromechanical Thermoelectric Sensors
,”
J. Appl. Phys.
0021-8979,
98
, p.
044906
.
29.
Masters
,
N.
,
Ye
,
W.
, and
King
,
W. P.
, 2005, “
The Impact of Sub-Continuum Gas Conduction on the Sensitivity of Heated Atomic Force Microscope Cantilevers
,”
Phys. Fluids
1070-6631,
17
, p.
100615
.
30.
Zhang
,
Z. M.
, 2007,
Nano∕Microscale Heat Transfer
,
McGraw-Hill
,
New York
.
31.
Fu
,
C. J.
, and
Zhang
,
Z. M.
, 2006, “
Nanoscale Radiation Heat Transfer for Silicon at Different Doping Levels
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
1703
1718
.
32.
Fortier
,
D.
, and
Suzuki
,
K.
, 1976, “
Effect of p-Donors on Thermal Phonon Scattering in Si
,”
J. Phys. (Paris)
0302-0738,
37
, pp.
143
147
.
33.
Liu
,
W.
, and
Asheghi
,
M.
, 2006, “
Thermal Conductivity Measurements of Ultra-Thin Single Crystal Silicon Layers
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
75
83
.
34.
Palisoc
,
A. L.
, and
Lee
,
C. C.
, 1988, “
Thermal-Properties of the Multilayer Infinite-Plate Structure
,”
J. Appl. Phys.
0021-8979,
64
, pp.
410
415
.
35.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1959,
Conduction of Heat in Solids
,
2nd ed.
,
Clarendon
,
Oxford
.
36.
Abel
,
M. R.
,
Graham
,
S.
,
Serrano
,
J. R.
,
Kearney
,
S. P.
, and
Phinney
,
L. M.
, 2007, “
Raman Thermometry of Polysilicon Microelectro-Mechanical Systems in the Presence of an Evolving Stress
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
329
334
.
37.
Zhang
,
Q. G.
,
Cao
,
B. Y.
,
Zhang
,
X.
,
Fujii
,
M.
, and
Takahashi
,
K.
, 2006, “
Size Effects on the Thermal Conductivity of Polycrystalline Platinum Nanofilms
,”
J. Phys.: Condens. Matter
0953-8984,
18
, pp.
7937
7950
.
38.
Jungen
,
A.
,
Pfenninger
,
M.
,
Tonteling
,
M.
,
Stampfer
,
C.
, and
Hierold
,
C.
, 2006, “
Electrothermal Effects at the Microscale and Their Consequences on System Design
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
1633
1638
.
39.
Gomes
,
S.
,
Trannoy
,
N.
, and
Grossel
,
P.
, 1999, “
DC Thermal Microscopy: Study of the Thermal Exchange Between a Probe and a Sample
,”
Meas. Sci. Technol.
0957-0233,
10
, pp.
805
811
.
40.
Gotsmann
,
B.
, and
Dürig
,
U.
, 2005, “
Experimental Observation of Attractive and Repulsive Thermal Forces on Microcantilevers
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
194102
.
You do not currently have access to this content.