This paper presents the results of the numerical simulation of conjugate heat transfer during a semiconfined liquid jet impingement on a uniformly heated spinning solid disk of finite thickness and radius. This study considered various disk materials, namely, aluminum, copper, silver, Constantan, and silicon; covering a range of Reynolds number (220–900), Ekman number (7.08×105), nozzle-to-target spacing (β=0.251.0), disk thicknesses to nozzle diameter ratio (bdn=0.251.67), and Prandtl number (1.29–124.44) using ammonia (NH3), water (H2O), flouroinert (FC-77), and oil (MIL-7808) as working fluids. The solid to fluid thermal conductivity ratio was 36.91–2222. A higher thermal conductivity plate material maintained a more uniform interface temperature distribution. A higher Reynolds number increased the local heat transfer coefficient. The rotational rate also increased the local heat transfer coefficient under most conditions.

1.
McMurray
,
D. C.
,
Myers
,
P. S.
, and
Uyehara
,
O. A.
, 1966, “
Influence of Impinging Jet Variables on Local Heat Transfer Coefficients Along a Flat Surface With Constant Heat Flux
,”
Proceedings of the Third International Heat Transfer Conference
,
Chicago, IL
, Vol.
2
, pp.
292
299
.
2.
Metzger
,
D. E.
,
Cammings
,
K. N.
, and
Ruby
,
W. A.
, 1974, “
Effects of Prandtl Number on Heat Transfer Characteristics of Impinging Liquid Jets
,”
Proceedings of the Fifth International Heat Transfer Conference
,
Tokyo
, Vol.
2
, pp.
20
24
.
3.
Hung
,
Y. H.
, and
Lin
,
Z. H.
, 1994, “
Effect of Confinement Plate on Heat Transfer Characteristics of a Circular Jet Impingement
,”
Proceedings of the ASME Fundamentals of Heat Transfer in Forced Convection
, HTD, Vol.
285
, pp.
101
109
.
4.
Webb
,
B. W.
, and
Ma
,
C. F.
, 1995, “
Single-Phase Liquid Jet Impingement Heat Transfer
,”
Adv. Heat Transfer
0065-2717,
26
(
1
), pp.
105
117
.
5.
Garimella
,
S. V.
, and
Nenaydykh
,
B.
, 1996, “
Nozzle-Geometry Effects in Liquid Jet Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
14
), pp.
2915
2923
.
6.
Fitzgerald
,
J. A.
, and
Garimella
,
S. V.
, 1998, “
A Study of the Flow Field of a Confined and Submerged Impinging Jet
,”
Int. J. Heat Mass Transfer
0017-9310,
41
(
8–9
), pp.
1025
1034
.
7.
Li
,
D. Y.
,
Guo
,
Z. Y.
, and
Ma
,
C. F.
, 1997, “
Relationship Between the Recovery Factor and the Viscous Dissipation in a Confined, Impinging, Circular Jet of High-Prandtl Number Liquid
,”
Int. J. Heat Fluid Flow
0142-727X,
18
(
6
), pp.
585
590
.
8.
Rahman
,
M. M.
,
Dontaraju
,
P.
, and
Ponnappan
,
R.
, 2002, “
Confined Jet Impingement Thermal Management Using Liquid Ammonia as the Working Fluid
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
New Orleans, LA
, pp.
1
10
.
9.
Li
,
C. Y.
, and
Garimella
,
S. V.
, 2001, “
Prandtl-Number Effects and Generalized Correlations for Confined and Submerged Jet Impingement
,”
Int. J. Heat Mass Transfer
0017-9310,
44
(
18
), pp.
3471
3480
.
10.
Ichimiya
,
K.
, and
Yamada
,
Y.
, 2003, “
Three-Dimensional Heat Transfer of a Confined Circular Impinging Jet With Buoyancy Effects
,”
ASME J. Heat Transfer
0022-1481,
125
(
2
), pp.
250
256
.
11.
Dano
,
B.
,
Liburdy
,
J. A.
, and
Kanokjaruvijit
,
K.
, 2005, “
Flow Characteristics and Heat Transfer Performances of a Semi-Confined Impinging Array of Jets: Effect of Nozzle Geometry
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
3–4
), pp.
691
701
.
12.
Carper
,
H. J.
, Jr.
, and
Deffenbaugh
,
D. M.
, 1978, “
Heat Transfer From a Rotating Disk With Liquid Jet Impingement
,”
Sixth International Heat Transfer Conference
,
Toronto, ON
,
Hemisphere Public
,
Washington, DC
, Vol.
4
, pp.
113
118
.
13.
Carper
,
H. J.
, Jr.
,
Saavedra
,
J. J.
, and
Suwanprateep
,
T.
, 1986, “
Liquid Jet Impingement Cooling of a Rotating Disk
,”
ASME J. Heat Transfer
0022-1481,
108
(
3
), pp.
540
546
.
14.
Metzger
,
D. E.
,
Bunker
,
R. S.
, and
Bosh
,
G.
, 1991, “
Transient Liquid Crystal Measurement of Local Heat Transfer on a Rotating Disk With Jet Impingement
,”
ASME J. Turbomach.
0889-504X,
113
(
1
), pp.
52
59
.
15.
Thomas
,
S.
,
Faghri
,
A.
, and
Hankey
,
W. L.
, 1991, “
Experimental Analysis and Flow Visualization of a Thin Liquid Film on a Stationary and Rotating Disk
,”
ASME J. Fluids Eng.
0098-2202,
113
(
1
), pp.
73
80
.
16.
Rahman
,
M. M.
, and
Faghri
,
A.
, 1992, “
Numerical Simulation of Fluid Flow and Heat Transfer in a Thin Liquid Film Over a Rotating Disk
,”
Int. J. Heat Mass Transfer
0017-9310,
35
(
6
), pp.
1441
1453
.
17.
Rahman
,
M. M.
, and
Faghri
,
A.
, 1992, “
Analysis of Heating and Evaporation From a Liquid Film Adjacent to a Horizontal Rotating Disk
,”
Int. J. Heat Mass Transfer
0017-9310,
35
(
10
), pp.
2655
2664
.
18.
Faghri
,
A.
,
Thomas
,
S.
, and
Rahman
,
M. M.
, 1993, “
Conjugate Heat Transfer From a Heated Disk to a Thin Liquid Film Formed by a Controlled Impinging Jet
,”
ASME J. Heat Transfer
0022-1481,
115
(
1
), pp.
116
123
.
19.
Hung
,
Y. H.
, and
Shieh
,
Y. R.
, 2001, “
Convective Heat Transfer From a Rotating Ceramic-Based Multichip Disk With Round Jet Impingement
,”
Proceedings of the National Heat Transfer Conference
,
Anaheim, CA
, Vol.
1
, pp.
97
103
.
20.
Ozar
,
B.
,
Cetegen
,
B. M.
, and
Faghri
,
A.
, 2004, “
Experiments on Heat Transfer in a Thin Liquid Film Flowing Over a Rotating Disk
,”
ASME J. Heat Transfer
0022-1481,
126
(
2
), pp.
184
192
.
21.
Rice
,
J.
,
Faghri
,
A.
, and
Cetegen
,
B. M.
, 2005, “
Analysis of a Free Surface Film From a Controlled Liquid Impinging Jet Over a Rotating Disk Including Conjugate Effects, With and Without Evaporation
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
25–26
), pp.
5192
5204
.
22.
Burmeister
,
L. C.
, 1993,
Convective Heat Transfer
,
2nd ed.
,
Wiley
,
New York
, pp.
581
590
.
23.
White
,
F. M.
, 1999,
Fluid Mechanics
,
4th ed.
,
McGraw-Hill
,
New York
, pp.
234
236
.
24.
Popiel
,
C. O.
, and
Boguslawski
,
L.
, 1986, “
Local Heat Transfer From a Rotating Disk in an Impinging Round Jet
,”
ASME J. Heat Transfer
0022-1481,
108
(
2
), pp.
357
364
.
25.
Vanyo
,
J. P.
, 1993,
Rotating Fluids in Engineering and Science
,
Butterworth-Heinemann
,
MA
, Chap. 14, pp.
233
264
.
26.
Özisik
,
M. N.
, 1993,
Heat Conduction
,
2nd ed.
,
Wiley
,
New York
, pp.
657
660
.
27.
Bejan
,
A.
, 1995,
Convection Heat Transfer
,
2nd ed.
,
Wiley
,
New York
, pp.
595
602
.
28.
Bula
,
A. J.
, 1999, “
Numerical Modeling of Conjugate Heat Transfer During Free Liquid Jet Impingement
,” Ph.D. thesis, University of South Florida, Tampa, FL.
29.
Fletcher
,
C. A. J.
, 1984,
Computational Galerkin Methods
,
Springer
,
New York
, pp.
27
and
205
.
30.
Liu
,
X.
,
Lienhard
,
J. H.
, and
Lombara
,
J. S.
, 1991, “
Convective Heat Transfer by Impingement of Circular Liquid Jets
,”
ASME J. Heat Transfer
0022-1481,
113
(
3
), pp.
571
582
.
31.
Ma
,
C. F.
,
Zheng
,
Q.
,
Lee
,
S. C.
, and
Gomi
,
T.
, 1996, “
Impingement Heat Transfer and Recovery Effect With Submerged Jets of Large Prandtl Number Liquid 2. Initially Laminar Confined Slot Jets
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
6
), pp.
1491
1500
.
32.
Brodersen
,
S.
,
Metzger
,
D. E.
, and
Fernando
,
H. J. S.
, 1996, “
Flows Generated by the Impingement of a Jet on a Rotating Surface, Part 1: Basic Flow Patterns
,”
ASME J. Fluids Eng.
0098-2202,
118
(
1
), pp.
61
67
.
33.
Lachefski
,
H.
,
Cziesla
,
T.
,
Biswas
,
G.
, and
Mitra
,
K.
, 1996, “
Numerical Investigation of Heat Transfer by Rows of Rectangular Impinging Jets
,”
Numer. Heat Transfer, Part A
1040-7782,
30
(
1
), pp.
87
101
.
This content is only available via PDF.
You do not currently have access to this content.