A series of numerical simulation of the flow and heat transfer in modeled counterflow heat exchangers with oblique wavy walls has been made toward optimal shape design of recuperators. The effects of oblique angles and amplitudes of the wavy walls are systematically evaluated, and the heat transfer and pressure loss characteristics are investigated. It is found that counter-rotating streamwise vortices are induced by the wavy walls, and the flow field has been drastically modified due to the intense secondary flow. By using the optimum set of oblique angle and wave amplitude, significant heat transfer enhancement has been achieved at the cost of relatively small pressure loss, and the jf factor becomes much larger than that of straight square duct or conventional compact recuperators. When thermal coupling of hot and cold fluid passages is considered, the heat transfer is found to be strongly dependent on the arrangement of counterflow passages. The total heat transfer surface area required for a given pumping power and heat transfer rate can be reduced by more than 60% if compared to the straight square duct.

1.
Uechi
,
H.
,
Kimijima
,
S.
, and
Kasagi
,
N.
, 2004, “
Cycle Analysis of Gas Turbine-Fuel Cell Cycle Hybrid Micro Generation System
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
(
4
), pp.
755
762
.
2.
Kays
,
W. M.
, and
London
,
A. L.
, 1984,
Compact Heat Exchangers
, 3rd ed.,
McGraw-Hill
,
New York
.
3.
Webb
,
R. L.
, 1994,
Principles of Enhanced Heat Transfer
,
Wiley
,
New York
.
4.
Manglik
,
R. M.
, 2003, “
Heat Transfer Enhancement
,”
Heat Transfer Handbook
,
A.
Bejan
and
A. D.
Kraus
, eds.,
Wiley
,
New York
, Chap. 14.
5.
McDonald
,
C. F.
, 2000, “
Low-Cost Compact Primary Surface Recuperator Concept for Microturbines
,”
Appl. Therm. Eng.
1359-4311,
20
(
5
), pp.
471
497
.
6.
Focke
,
W. W.
,
Zachariades
,
J.
, and
Olivier
,
I.
, 1985, “
The Effect of the Corrugation Inclination Angle on the Thermohydraulic Performance of Plate Heat Exchangers
,”
Int. J. Heat Mass Transfer
0017-9310,
28
(
8
), pp.
1469
1479
.
7.
Stasiek
,
J.
,
Collins
,
M. W.
,
Ciofalo
,
M.
, and
Chew
,
P. E.
, 1996, “
Investigation of Flow and Heat Transfer in Corrugated Passages—I. Experimental Results
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
1
), pp.
149
164
.
8.
Ciofalo
,
M.
,
Stasiek
,
J.
, and
Collins
,
M. W.
, 1996, “
Investigation of Flow and Heat Transfer in Corrugated Passages—II. Numerical Simulations
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
1
), pp.
165
192
.
9.
Blomerius
,
H.
,
Holsken
,
C.
, and
Mitra
,
N. K.
, 1999, “
Numerical Investigation of Flow Field and Heat Transfer in Cross-Corrugated Ducts
,”
ASME J. Heat Transfer
0022-1481,
121
(
2
), pp.
314
321
.
10.
Metwally
,
H. M.
, and
Manglik
,
R. M.
, 2004, “
Enhanced Heat Transfer Due to Curvature-Induced Lateral Vortices in Laminar Flows in Sinusoidal Corrugated-Plate Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
10–11
), pp.
2283
2292
.
11.
Manglik
,
R. M.
,
Zhang
,
J.
, and
Muley
,
A.
, 2005, “
Low Reynolds Number Forced Convection in Three Dimensional Wavy-Plate-Fin Compact Channels: Fin Density Effects
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
8
), pp.
1439
1449
.
12.
Utriainen
,
E.
, and
Sundén
,
B.
, 2002, “
A Numerical Investigation of Primary Surface Rounded Cross Wavy Ducts
,”
Heat Mass Transfer
0947-7411,
38
(
7–8
), pp.
537
542
.
13.
Yin
,
J.
,
Li
,
G.
, and
Feng
,
Z.
, 2006, “
Effects of Intersection Angles on Flow and Heat Transfer in Corrugated-Undulated Channels With Sinusoidal Waves
,”
ASME J. Heat Transfer
0022-1481,
128
(
8
), pp.
819
828
.
14.
Utriainen
,
E.
, and
Sundén
,
B.
, 2002, “
Evaluation of the Cross Corrugated and Some Other Candidate Heat Transfer Surface for Microturbine Recuperators
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
(
3
), pp.
550
560
.
15.
Kajishima
,
T.
,
Ohta
,
T.
,
Okazaki
,
K.
, and
Miyake
,
Y.
, 1998, “
High-Order Finite-Difference Method for Incompressible Flows Using Collocated Grid System
,”
JSME Int. J., Ser. B
1340-8054,
41
(
4
), pp.
830
839
.
16.
Rhie
,
C. M.
, and
Chow
,
W. L.
, 1983, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
0001-1452,
21
(
11
), pp.
1525
1532
.
17.
Amsden
,
A. A.
, and
Harlow
,
F. H.
, 1970, “
A Simplified MAC Technique for Incompressible Fluid Flow Calculation
,”
J. Comput. Phys.
0021-9991,
6
, pp.
322
325
.
18.
Patankar
,
S. V.
,
Liu
,
C. H.
, and
Sparrow
,
E. M.
, 1977, “
Fully Developed Flow and Heat-Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area
,”
ASME J. Heat Transfer
0022-1481,
99
(
2
), pp.
180
186
.
19.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts
(Advances in Heat Transfer Supplement 1),
Academic
,
New York
.
20.
Chong
,
M. S.
,
Perry
,
A. E.
, and
Cantwell
,
B. J.
, 1990, “
A General Classification of Three-Dimensional Flow Fields
,”
Phys. Fluids A
0899-8213,
2
(
5
), pp.
765
777
.
21.
Utriainen
,
E.
, and
Sundén
,
B.
, 2001, “
A Comparison of Some Heat Transfer Surfaces for Small Gas Turbine Recuperators
,” ASME Paper No. 2001-GT-0474.
22.
Manglik
,
R. M.
, and
Bergles
,
B. E.
, 1995, “
Heat Transfer and Pressure Drop Correlations for the Rectangular Offset Strip Fin Compact Heat Exchanger
,”
Exp. Therm. Fluid Sci.
0894-1777,
10
(
2
), pp.
171
180
.
23.
Cowell
,
T. A.
, 1990, “
A General Method for the Comparison of Compact Heat Transfer Surfaces
,”
ASME J. Heat Transfer
0022-1481,
112
(
2
), pp.
288
294
.
You do not currently have access to this content.