A curved rotating heat pipe for use in motor and generator applications is studied experimentally. The heat pipe is built so that both the condenser and evaporator sections are parallel to the axis of rotation. The condenser section is close to the axis of rotation while the evaporator section can be placed in contact with off-axis heat sources in the rotating machine. The geometry is achieved by incorporating an S-shaped curve between the on-axis rotating condenser section and the off-axis revolving evaporator section. The curved rotating heat pipe allows for a direct coupling of the rotating condenser section to an on-axis stationary refrigeration system, while allowing the revolving evaporator section to intercept off-axis heat sources in the rotating machine. An experimental rotating heat pipe test apparatus was built and operated. The test data indicate that the working fluid continued to circulate, resulting in heat transfer with a high effective thermal conductivity, with the curved rotating heat pipe operating under the influence of centrifugal accelerations approaching 400g. Furthermore, the experimental results were used to validate a heat pipe thermal model that can be used in the design of rotating machines that rely on the curved rotating heat pipe as part of the thermal management system.

1.
Ponnappan
,
R.
, and
Leland
,
J. E.
, 1998, “
Rotating Heat Pipe for High Speed Motor∕Generator Cooling
,” Aerospace Power Systems Conference,
Williamsburg, VA
.
2.
Thoren
,
F.
, 1984, “
Heat Pipe Cooled Induction Motors
,” 5th International Heat Pipe Conference,
Tsukuba, Japan
.
3.
Jankowski
,
T. A.
, 2007, “
Numerical and Experimental Investigations of a Rotating Heat Pipe
,” Ph.D. thesis The University of New Mexico, Albuquerque, NM.
4.
Niekawa
,
J.
,
Matsumoto
,
K.
,
Koizumi
,
T.
,
Hasegawa
,
K.
,
Kaneko
,
H.
, and
Mizoguchi
,
Y.
, 1981, “
Performance of Revolving Heat Pipes and Application to a Rotary Heat Exchanger
,” 4th International Heat Pipe Conference,
London, UK
.
5.
Maezawa
,
S.
,
Takuma
,
M.
, and
Tsuchida
,
A.
, 1984, “
Application of Disk-Shaped Rotating Heat Pipe to Brake Cooling
,”
Heat and Mass Transfer in Rotating Machinery
,
Hemisphere
,
Washington, DC
, pp.
659
668
.
6.
Nerowski
,
G.
,
Frauenhofer
,
J.
,
Ries
,
G.
,
Nick
,
W.
, and
Neumuller
,
H. W.
, 2004, “
Advances and Prospects of HTS Rotating Machine Development at Siemens
,”
IEEE Power Engineering Society General Meeting
, Vols.
1
and
2
, pp.
2052
2055
.
7.
Urbahn
,
J. A.
,
Ackermann
,
R. A.
,
Huang
,
X.
,
Laskaris
,
E. T.
,
Sivasubramaniam
,
K.
, and
Steinbach
,
A.
, 2004, “
The Thermal Performance of a 1.5MVA HTS Generator
,”
Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference
, Vol.
49
, pp.
849
858
.
8.
Unique Wire Weaving Co.
, Inc., 762 Ramsey Ave., Hillside, NJ 07205, SS Type 316 Plain Weave.
9.
Omega Engineering Inc.
, One Omega Drive, P.O. Box 4047, Stamford, CT 06907-0047.
10.
Figliola
,
R. S.
, and
Beasley
,
D. E.
, 1995,
Theory and Design for Mechanical Measurements
,
2nd ed.
,
Wiley
,
New York
.
11.
Cotter
,
T. P.
, 1965, “
Theory of Heat Pipes
,”
Los Alamos National Laboratory
, Report No. LA-3246-MS.
12.
Woloshun
,
K. A.
,
Merrigan
,
M. A.
, and
Best
,
E. D.
, 1988, “
HTPIPE: A Steady-State Heat Pipe Analysis Program
,”
Los Alamos National Laboratory
, Report No. LA-11324-M.
13.
Daniels
,
T. C.
, and
Al-Jumaily
,
F. K.
, 1975, “
Investigations of the Factors Affecting the Performance of a Rotating Heat Pipe
,”
Int. J. Heat Mass Transfer
0017-9310,
18
, pp.
961
973
.
14.
Marto
,
P. J.
, 1976, “
Performance Characteristics of Rotating, Wickless Heat Pipes
,” 2nd International Heat Pipe Conference,
Bologna, Italy
.
15.
Sim
,
B. C.
,
Kim
,
W. S.
, and
Zebib
,
A.
, 2004, “
Axisymmetric Thermocapillary Convection in Open Cylindrical Annuli With Deforming Interfaces
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
5365
5373
.
16.
Pacheco
,
J. R.
, and
Peck
,
R. E.
, 2000, “
Nonstaggered Boundary-Fitted Coordinate Method for Free Surface Flows
,”
Numer. Heat Transfer, Part B
1040-7790,
37
, pp.
267
291
.
17.
Faghri
,
M.
,
Sparrow
,
E. M.
, and
Prata
,
A. T.
, 1984, “
Finite-Difference Solutions of Convection-Diffusion Problems in Irregular Domains, Using a Nonorthogonal Coordinate Transformation
,”
Numer. Heat Transfer
0149-5720,
7
, pp.
183
209
.
18.
Song
,
F.
,
Ewing
,
D.
, and
Ching
,
C. Y.
, 2003, “
Fluid Flow and Heat Transfer Model for High-Speed Rotating Heat Pipes
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4393
4401
.
19.
Roache
,
P. J.
, 1998,
Verification and Validation in Computational Science and Engineering
,
Hermosa
,
Albuquerque, NM
.
20.
Marto
,
P. J.
, 1984, “
Rotating Heat Pipes
,”
Heat and Mass Transfer in Rotating Machinery
,
Hemisphere
,
Washington, DC
, pp.
609
632
.
21.
Körner
,
W.
, 1970, “
Effect of High Acceleration on Heat Transfer During Boiling
,”
Chem.-Ing.-Tech.
0009-286X,
42
, pp.
409
414
.
22.
Bejan
,
A.
, 1995,
Convection Heat Transfer
,
Wiley
,
New York
, pp.
219
267
.
23.
Osborne
,
D. G.
, and
Incropera
,
F. P.
, 1985, “
Experimental Study of Mixed Convection Heat Transfer for Transitional and Turbulent Flow Between Horizontal, Parallel Plates
,”
Int. J. Heat Mass Transfer
0017-9310,
28
, pp.
1337
1344
.
24.
Osborne
,
D. G.
, and
Incropera
,
F. P.
, 1985, “
Laminar, Mixed Convection Heat Transfer for Flow Between Horizontal Parallel Plates With Asymmetric Heating
,”
Int. J. Heat Mass Transfer
0017-9310,
28
, pp.
207
217
.
25.
Hieber
,
C. A.
, 1982, “
Laminar Mixed Convection in an Isothermal Horizontal Tube: Correlation of Heat Transfer Data
,”
Int. J. Heat Mass Transfer
0017-9310,
25
, pp.
1737
1746
.
26.
Nagendra
,
H. R.
, 1973, “
Interaction of Free and Forced Convection in Horizontal Tubes in the Transition Regime
,”
J. Fluid Mech.
0022-1120,
57
, pp.
269
288
.
27.
Churchill
,
S. W.
, 1977, “
A Comprehensive Correlating Equation for Laminar, Assisting, Forced and Free Convection
,”
AIChE J.
0001-1541,
23
, pp.
10
16
.
28.
Semena
,
M. G.
,
Khmelev
,
Y. A.
, and
Shevel
,
E. V.
, 1991, “
Distribution of Heat Transfer Agent in the Capillary Structure of Rotating Heat Pipes With a Displaced Axis of Rotation
,”
J. Eng. Phys.
0022-0841,
60
, pp.
642
645
.
29.
Gi
,
K.
, and
Maezawa
,
S.
, 1990, “
Heat Transfer Characteristics of a Parallel Rotating Heat Pipe
,” 7th International Heat Pipe Conference,
Minsk, USSR
.
30.
Curtila
,
R.
, and
Chataing
,
T.
, 1984, “
Experimental Study of a Revolving Heat Pipe
,” 5th International Heat Pipe Conference,
Tsukuba, Japan
.
31.
Pokorny
,
B.
,
Polasek
,
F.
,
Schneller
,
J.
, and
Stulc
,
P.
, 1984, “
Heat Transfer in Co-Axial and Parallel Rotating Heat Pipes
,” 5th International Heat Pipe Conference,
Tsukuba
,
Japan
.
32.
Jian
,
C.
,
Lou
,
D. Y. S.
, and
Chuanjing
,
T.
, 1990, “
Investigation of the Evaporation Heat Transfer in the Rotating Heat Pipes
,” 7th International Heat Pipe Conference,
Minsk, USSR
.
33.
Krivosheev
,
B. N.
,
Kukharskii
,
M. P.
, and
Portnov
,
V. D.
, 1979, “
Heat Transfer in the Evaporator Section of a Rotating Heat Pipe at Low Rotational Speeds
,”
J. Eng. Phys. Thermophys.
1062-0125,
37
, pp.
773
778
.
34.
Reddy
,
R. S.
,
Venkateswarlu
,
P.
, and
Sastri
,
V. M. K.
, 1990, “
Effect of Inclination on the Performance of Rotating Heat Pipe
,” 7th International Heat Pipe Conference,
Minsk, USSR
.
35.
Castle
,
R. M.
,
Thomas
,
S. K.
, and
Yerkes
,
K. L.
, 2001, “
The Effect of Working Fluid Inventory on the Performance of Revolving Helically Grooved Heat Pipes
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
120
129
.
36.
Klasing
,
K. S.
,
Thomas
,
S. K.
, and
Yerkes
,
K. L.
, 1999, “
Prediction of the Operating Limits of Revolving Helically Grooved Heat Pipes
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
213
217
.
You do not currently have access to this content.