A random number model based on fractal geometry theory is developed to calculate the thermal contact conductance (TCC) of two rough surfaces in contact. This study is carried out by geometrical and mechanical investigations. The present study reveals that the fractal parameters D and G have important effects on TCC. The predictions by the proposed model are compared with existing experimental data, and good agreement is observed by fitting parameters D and G. The results show that the effect of the bulk resistance on TCC, which is often neglected in existing models, should not be neglected for the relatively larger G and D. The main advantage of this model is the randomization of roughness distributions on rough surfaces. The present results also show a better agreement with the practical situation than the results of other models. The proposed technique may have the potential in prediction of other phenomena such as friction, radiation, wear and lubrication on rough surfaces.

1.
Cong
,
P. Z.
,
Zhang
,
X.
, and
Fujii
,
M.
, 2006, “
Estimation of Thermal Contact Resistance Using Ultrasonic Waves
,”
Int. J. Thermophys.
0195-928X,
27
, pp.
171
183
.
2.
Cooper
,
M. G.
,
Mikic
,
B. B.
, and
Yovanovich
,
M. M.
, 1969, “
Thermal Contact Conductance
,”
Int. J. Heat Mass Transfer
0017-9310,
12
, pp.
279
300
.
3.
Mikic
,
B. B.
, 1974, “
Thermal Contact Conductance; Theoretical Considerations
,”
Int. J. Heat Mass Transfer
0017-9310,
17
, pp.
205
214
.
4.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
5.
Majumdar
,
A.
, and
Tien
,
C. L.
, 1991, “
Fractal Network Model for Contact Conductance
,”
ASME J. Heat Transfer
0022-1481,
113
, pp.
516
525
.
6.
Nishino
,
K.
,
Yamashita
,
S.
, and
Torii
,
K.
, 1995, “
Thermal Contact Conductance Under Low Applied Load in a Vacuum Environment
,”
Exp. Therm. Fluid Sci.
0894-1777,
10
, pp.
258
271
.
7.
Madhusudana
,
C. V.
, 1996,
Thermal Contact Conductance
,
Springer-Verlag
,
New York
, pp.
4
5
.
8.
Jeng
,
Y. R.
,
Chen
,
J. T.
, and
Cheng
,
C. Y.
, 2003, “
Theoretical and Experimental Study of a Thermal Contact Conductance Model for Elastic, Elastoplastic and Plastic Deformation of Rough Surfaces
,”
Tribol. Lett.
1023-8883,
14
, pp.
251
259
.
9.
Bahrami
,
M.
,
Culham
,
J. R.
,
Yovanovich
,
M. M.
, and
Schneider
,
G. E.
, 2003, “
Review of Thermal Joint Resistance Models for Non-Conforming Rough Surfaces in a Vacuum
,” ASME Paper No. HT2003-47051.
10.
Bahrami
,
M.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
, 2004, “
Thermal Contact Resistance: A Scale Analysis Approach
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
896
905
.
11.
Wahid
,
S. M. S.
,
Madhusudana
,
C. V.
, and
Leonardi
,
E.
, 2004, “
Solid Spot Conductance at Low Contact Pressure
,”
Exp. Therm. Fluid Sci.
0894-1777,
28
, pp.
489
494
.
12.
Xiao
,
Y. M.
,
Sun
,
H.
,
Xu
,
L.
,
Feng
,
H. D.
, and
Zhu
,
H. M.
, 2004, “
Thermal Contact Conductance Between Solid Interfaces Under Low Temperature and Vacuum
,”
Rev. Sci. Instrum.
0034-6748,
75
, pp.
3074
3076
.
13.
Kumar
,
S. S.
,
Abilash
,
P. M.
, and
Ramamurthi
,
K.
, 2004, “
Thermal Contact Conductance for Cylindrical and Spherical Contacts
,”
Heat Mass Transfer
0947-7411,
40
, pp.
679
688
.
14.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
, 2005, “
Thermal Contact Resistance at Low Contact Pressure: Effect of Elastic Deformation
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3284
3293
.
15.
Bahrami
,
M.
,
Culham
,
J. R.
,
Yananovich
,
M. M.
, and
Schneider
,
G. E.
, 2006, “
Review of Thermal Joint Resistance Models for Nonconforming Rough Surfaces
,”
Appl. Mech. Rev.
0003-6900,
59
, pp.
1
11
.
16.
Zhang
,
X.
,
Cong
,
P. Z.
, and
Fujii
,
M.
, 2006, “
A Study on Thermal Contact Resistance at the Interface of Two Solids
,”
Int. J. Thermophys.
0195-928X,
27
, pp.
880
895
.
17.
Yüncü
,
H.
, 2006, “
Thermal Contact Conductance of Nominaly Flat Surfaces
,”
Heat Mass Transfer
0947-7411,
43
, pp.
1
5
.
18.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
1364-5021,
295
, pp.
300
319
.
19.
Patir
,
N.
, 1978, “
A Numerical Procedure for Random Generation of Rough Surfaces
,”
Wear
0043-1648,
47
, pp.
263
277
.
20.
Majumdar
,
A.
, and
Tien
,
C. L.
, 1990, “
Fractal Characterization and Simulation of Rough Surfaces
,”
Wear
0043-1648,
136
, pp.
313
327
.
21.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1990, “
Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces
,”
ASME J. Tribol.
0742-4787,
112
, pp.
205
216
.
22.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1991, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
113
, pp.
1
11
.
23.
Mandelbrot
,
B. B.
, 1983,
The Fractal Geometry of Nature
,
Freeman
,
New York
.
24.
Warren
,
T. L.
, and
Krajcinovic
,
D.
, 1995, “
Fractal Models of Elastic-Perfectly Plastic Contact of Rough Surfaces Based on the Cantor Set
,”
Int. J. Solids Struct.
0020-7683,
32
, pp.
2907
2922
.
25.
Yan
,
W.
, and
Komvopoulos
,
K.
, 1998, “
Contact Analysis of Elastic-Plastic Fractal Surfaces
,”
J. Appl. Phys.
0021-8979,
84
, pp.
3617
3624
.
26.
Willner
,
K.
, 2004, “
Elasto-Plastic Normal Contact of Three-Dimensional Fractal Surfaces Using Halfspace Theory
,”
ASME J. Tribol.
0742-4787,
126
, pp.
28
33
.
27.
Berry
,
M. V.
, and
Lewis
,
Z. V.
, 1980, “
On the Weierstrass-Mandelbrot Fractal Function
,”
Proc. R. Soc. London, Ser. A
1364-5021,
370
, pp.
459
484
.
28.
Komvopoulos
,
K.
, 2000, “
Head-Disk Interface Contact Mechanics for Ultrahigh Density Magnetic Recording
,”
Wear
0043-1648,
238
, pp.
1
11
.
29.
Liou
,
J. L.
, and
Lin
,
J. F.
, 2006, “
A New Method Developed for Fractal Dimension and Topothesy Varying With the Mean Separation of Two Contact Surfaces
,”
ASME J. Tribol.
0742-4787,
128
, pp.
515
524
.
30.
Yu
,
B. M.
, and
Li
,
J. H.
, 2001, “
Some Fractal Characters of Porous Media
,”
Fractals
0218-348X,
9
, pp.
365
372
.
31.
Yu
,
B. M.
, and
Cheng
,
P.
, 2002, “
A Fractal Permeability Model for Bidispersed Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
2983
2993
.
32.
Yu
,
B. M.
,
Lee
,
L. J.
, and
Cao
,
H. Q.
, 2002, “
A Fractal In-Plane Permeability Model for Fabrics
,”
Polym. Compos.
0272-8397,
23
, pp.
201
221
.
33.
Yu
,
B. M.
,
Zou
,
M. Q.
, and
Feng
,
Y. J.
, 2005, “
Permeability of Fractal Porous Media by Monte Carlo Simulations
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2787
2794
.
34.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
, 1970–1971, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng.
0020-3483,
185
, pp.
625
633
.
35.
Sahoo
,
P.
, and
Banerjee
,
A.
, 2005, “
Asperity Interaction in Adhesive Contact of Metallic Rough Surfaces
,”
J. Phys. D
0022-3727,
38
, pp.
4096
4103
.
36.
Archard
,
J. F.
, 1957, “
Elastic Deformation and the Laws of Friction
,”
Proc. R. Soc. London, Ser. A
1364-5021,
243
, pp.
190
205
.
37.
Ciavarella
,
M.
, and
Demelio
,
G.
, 2001, “
Elastic Multiscale Contact of Rough Surfaces: Archard’s Model Revisited and Comparisons With Modern Fractal Models
,”
ASME J. Appl. Mech.
0021-8936,
68
, pp.
496
498
.
38.
Lumbantobing
,
A.
,
Kogut
,
L.
, and
Komvopoulos
,
K.
, 2004, “
Electrical Contact Resistance as a Diagnostic Tool for MEMS Contact Interfaces
,”
J. Microelectromech. Syst.
1057-7157,
13
, pp.
977
987
.
39.
Morag
,
Y.
, and
Etsion
,
I.
, 2007, “
Resolving the Contradiction of Asperities Plastic to Elastic Mode Transition in Current Contact Models of Fractal Rough Surfaces
,”
Wear
0043-1648,
262
, pp.
624
629
.
40.
Yang
,
A. J.
, and
Komvopoulos
,
K.
, 2005, “
Mechanics Approach to Static Friction of Elastic-Plastic Fractal Surfaces
,”
ASME J. Tribol.
0742-4787,
127
, pp.
315
324
.
41.
Komvopoulos
,
K.
, and
Ye
,
N.
, 2001, “
Three-Dimensional Contact Analysis of Elastic-Plastic Layered Media With Fractal Surface Topographies
,”
ASME J. Tribol.
0742-4787,
123
, pp.
632
640
.
42.
Kogut
,
L.
, and
Komvopoulos
,
K.
, 2003, “
Electrical Contact Resistance Theory for Conductive Rough Surfaces
,”
J. Appl. Phys.
0021-8979,
94
, pp.
3153
3162
.
43.
Zou
,
M. Q.
,
Yu
,
B. M.
,
Feng
,
Y. J.
, and
Xu
,
P.
, 2007, “
A Monte Carlo Method for Simulating Fractal Surfaces
,”
Physica A
0378-4371,
386
, pp.
176
186
.
You do not currently have access to this content.