Fluid flows of varying temperature occur in heat exchangers, nuclear reactors, nonsteady-flow devices, and combustion engines, among other applications with heat transfer processes that influence energy conversion efficiency. A general numerical method was developed with the capability to predict the transient laminar thermal-boundary-layer response for similar or nonsimilar flow and thermal behaviors. The method was tested for the step change in the far-field flow temperature of a two-dimensional semi-infinite flat plate with steady hydrodynamic boundary layer and constant wall temperature assumptions. Changes in the magnitude and sign of the fluid-wall temperature difference were considered, including flow with no initial temperature difference and built-up thermal boundary layer. The equations for momentum and energy were solved based on the Keller-box finite-difference method. The accuracy of the method was verified by comparing with related transient solutions, the steady-state solution, and by grid independence tests. The existence of a similarity solution is shown for a step change in the far-field temperature and is verified by the computed general solution. Transient heat transfer correlations are presented, which indicate that both magnitude and direction of heat transfer can be significantly different from predictions by quasisteady models commonly used. The deviation is greater and lasts longer for large Prandtl number fluids.

1.
Annand
,
W. J. D.
, and
Pinfold
,
D.
, 1980, “
Heat Transfer in the Cylinder of a Motored Reciprocating Engine
,” SAE Paper No. 800457.
2.
Kornhauser
,
A. A.
, and
Smith
,
J. L.
Jr.
, 1994, “
Application of a Complex Nusselt Number to Heat Transfer During Compression and Expansion
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
536
542
.
3.
Wilson
,
J.
, and
Paxson
,
D. E.
, 1996, “
Wave Rotor Optimization for Gas Turbine Engine Topping Cycles
,”
J. Propul. Power
0748-4658,
12
, pp.
778
785
.
4.
Nalim
,
M. R.
, and
Paxson
,
D. E.
, 1997, “
A Numerical Investigation of Premixed Combustion in Wave Rotors
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
119
, pp.
668
675
.
5.
Kailasanath
,
K.
, 2002, “
Recent Developments in the Research on Pulse Detonation Engines
,”
J. Propul. Power
0748-4658,
18
, pp.
77
83
.
6.
Klein
,
H.
, and
Eigenberger
,
G.
, 2001, “
Approximate Solutions for Metallic Regenerative Heat Exchanger
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
3553
3563
.
7.
Fujii
,
N.
,
Koshi
,
M.
,
Ando
,
H.
, and
Asaba
,
T.
, 1979, “
Evaluation of Boundary-Layer Effects in Shock-Tube Studies of Chemical Kinetics
,”
Int. J. Chem. Kinet.
0538-8066,
11
, pp.
285
304
.
8.
Nalim
,
M. R.
, 2000, “
Longitudinally Stratified Combustion in Wave Rotors
,”
J. Propul. Power
0748-4658,
16
, pp.
1060
1068
.
9.
Rebay
,
M.
, and
Padet
,
J.
, 2005, “
Parametric Study of Unsteady Forced Convection With Pressure Gradient
,”
Int. J. Eng. Sci.
0020-7225,
43
, pp.
655
667
.
10.
Harris
,
S. D.
,
Ingham
,
D. B.
, and
Pop
,
I.
, 2001, “
Transient Boundary-Layer Heat Transfer From a Flat Plate Subjected to a Sudden Change in Heat Flux
,”
Eur. J. Mech. B/Fluids
0997-7546,
20
, pp.
187
204
.
11.
Polidori
,
G.
,
Lachi
,
M.
, and
Padet
,
J.
, 1998, “
Unsteady Convective Heat Transfer on a Semi-Infinite Flat Surface Impulsively Heated
,”
Int. Commun. Heat Mass Transfer
0735-1933,
25
, pp.
33
42
.
12.
Rebay
,
M.
, and
Padet
,
J.
, 1999, “
Laminar Boundary-Layer Flow Over a Semi-Infinite Plate Impulsively Heated or Cooled
,”
Eur. Phys. J.: Appl. Phys.
1286-0042,
7
, pp.
263
269
.
13.
Kurkal
,
K. R.
, and
Munukutla
,
S.
, 1989, “
Thermal Boundary Layer Due to Sudden Heating of Fluid
,”
J. Thermophys. Heat Transfer
0887-8722,
3
, pp.
470
472
.
14.
Munukutla
,
S.
, and
Kurkal
,
K. R.
, 1988, “
Computational Analysis of Unsteady Heat Transfer in a Pulsed High Energy Laser Flow Loop
,” Paper No. AIAA-88-2745.
15.
Li
,
H.
, and
Nalim
,
M. R.
, 2007, “
Thermal Boundary Layer Response to Far-Field Flow Temperature Transitions
,” IMECE Paper No. 2007-41288.
16.
Keller
,
H. B.
, 1978, “
Numerical Methods in Boundary-Layer Theory
,”
Annu. Rev. Fluid Mech.
0066-4189,
10
, pp.
417
433
.
17.
Cimbala
,
J. M.
, 1980, “
Fourth-Order Keller Box Solution of the Incompressible Axisymmetric Boundary Layer Equations
,” Paper No. AIAA-80-0864.
18.
Keller
,
H. B.
, and
Cebeci
,
T.
, 1972, “
Accurate Numerical Methods for Boundary-Layer Flows. II: Two-Dimensional Turbulent Flows
,”
AIAA J.
0001-1452,
10
, pp.
1193
1199
.
19.
Cebeci
,
T.
,
Khattab
,
A. A.
, and
Stewartson
,
K.
, 1980, “
Studies on Three-Dimensional Boundary Layers on Bodies of Revolution. II. Three-Dimensional Laminar Boundary Layers and the OK of Accessibility
,” Douglas Aircraft Co., Long Beach, CA, Report No. MDC J8716.
20.
Vadyak
,
J.
, and
Hoffman
,
J. D.
, 1984, “
Three-Dimensional Flow Simulations for Supersonic Mixed-Compression Inlets and Incidence
,”
AIAA J.
0001-1452,
22
, pp.
873
881
.
21.
Cebeci
,
T.
, 1977, “
Calculation of Unsteady Two-Dimensional Laminar and Turbulent Boundary Layers With Fluctuations in External Velocity
,”
Proc. R. Soc. London, Ser. A
1364-5021,
355
, pp.
22
238
.
22.
Rebay
,
M.
,
Padet
,
J.
, and
Kakac
,
S.
, 2007, “
Forced Convection From a Microstructure on a Flat Plate
,”
Heat Mass Transfer
0947-7411,
43
, pp.
309
317
.
23.
Rees
,
D. A. S.
, 1997, “
Three-Dimensional Free Convection Boundary Layers in Porous Media Induced by a Heated Surface With Spanwise Temperature Variations
,”
ASME J. Heat Transfer
0022-1481,
119
, pp.
792
798
.
24.
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
, 2007, “
Mixed Convection on the Stagnation Point Flow Toward a Vertical, Continuously Stretching Sheet
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
1087
1090
.
25.
Cebeci
,
T.
, and
Bradshaw
,
P.
, 1984,
Physical and Computational Aspects of Convective Heat Transfer
,
Springer
,
Berlin
.
26.
Schlichting
,
H.
, and
Gersten
,
K.
, 2001,
Boundary Layer Theory
,
Springer-Verlag
,
New York
.
27.
White
,
F. M.
, 1991,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
28.
Telionis
,
D. P.
, 1981,
Unsteady Viscous Flow
,
Springer-Verlag
,
New York
.
29.
Smith
,
S. H.
, 1972, “
On the Impulsive Flow of a Viscous Liquid Past a Semi-Infinite Flat Plate
,”
SIAM J. Appl. Math.
0036-1399,
22
, pp.
148
154
.
30.
Paxson
,
D. E.
, 1995, “
A Comparison Between Numerically Modelled and Experimentally Measured Loss Mechanisms in Wave Rotors
,”
J. Propul. Power
0748-4658,
11
, pp.
908
914
.
You do not currently have access to this content.