A numerical analysis of forced convective heat transfer from a staggered tube bundle with various low conductivity wooden porous media inserts at maximum Reynolds numbers 100 and 300, Prandtl number 0.7, and Darcy number 0.25 is presented. The tubes are at constant temperature. The extended Darcy–Brinkman–Forchheimer equations and corresponding energy equation are solved numerically using finite volume approach. Parametric studies are done for the analysis of porous medium thermal conductivity and Reynolds number on the local Nusselt number distribution. Three different porous media with various solid to fluid thermal conductivity ratios 2.5, 5, and 7.5 are used in the numerical analysis. The results are compared with the numerical data for tube bundles without porous media insert and show that the presence of wooden porous media can increase the heat transfer from a tube bundle significantly (more than 50% in some cases). It is shown that high conductivity porous media are more effective than the others for the heat transfer enhancement from a staggered tube bundle. However, the presence of a porous medium increases the pressure drop. Therefore, careful attention is needed for the selection of a porous material with good heat transfer characteristics and acceptable pressure drop.

1.
Fowler
,
A. J.
, and
Bejan
,
A.
, 1994, “
Forced Convection in Banks of Inclined Cylinders at Low Reynolds Numbers
,”
Int. J. Heat Fluid Flow
0142-727X,
15
(
2
), pp.
90
99
.
2.
Nield
,
D. A.
, and
Bejan
,
A.
, 1992,
Convection in Porous Media
, 2nd ed.,
Springer
,
New York
.
3.
Fowler
,
A. J.
, and
Bejan
,
A.
, 1995, “
Forced Convection From a Surface Covered With Flexible Fibers
,”
Int. J. Heat Mass Transfer
0017-9310,
38
(
5
), pp.
767
777
.
4.
Vafai
,
K.
, and
Kim
,
S. J.
, 1990, “
Analysis of Surface Enhancement by a Porous Substrate
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
700
706
.
5.
Huang
,
P. C.
, and
Vafai
,
K.
, 1993, “
Flow and Heat Transfer Control Over an External Surface Using a Porous Block Array Arrangement
,”
Int. J. Heat Mass Transfer
0017-9310,
36
, pp.
4019
4032
.
6.
Huang
,
P. C.
, and
Vafai
,
K.
, 1994a, “
Passive Alteration and Control of Convective Heat Transfer Utilizing Alternate Porous Cavity-Block Wafers
,”
Int. J. Heat Fluid Flow
0142-727X,
15
, pp.
48
61
.
7.
Wang.
,
Y. Q.
,
Penner
,
L. A.
, and
Ormiston
,
M. J.
, 2000, “
Analysis of Laminar Forced Convection of Air for Cross Flow in Tube Banks of Staggered Tubes
,”
Numer. Heat Transfer, Part A
1040-7782,
38
(
8
), pp.
819
845
.
8.
Koh
,
J. C. Y.
, and
Colony
,
R.
, 1974, “
Analysis of Cooling Effectiveness for Porous Materials in a Coolant Passage
,”
ASME J. Heat Transfer
0022-1481,
96
, pp.
324
330
.
9.
Koh
,
J. C. Y.
, and
Stevens
,
R. L.
, 1975, “
Enhancement of Cooling Effectiveness by Porous Materials in Coolant Passage
,”
ASME J. Heat Transfer
0022-1481,
97
, pp.
309
311
.
10.
Phanikumar
,
M. S.
, and
Mahajan
,
R. L.
, 2002, “
Non-Darcy Natural Convection in High-Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
18
), pp.
3781
3793
.
11.
Pavel
,
B. I.
, and
Mohamad
,
A. A.
, 2004, “
Experimental Investigation of the Potential of Metallic Porous Inserts in Enhancing Forced Convective Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
126
(
4
), pp.
540
545
.
12.
Pavel
,
B. I.
, and
Mohamad
,
A. A.
, 2004, “
An Experimental and Numerical Study on Heat Transfer Enhancement for Gas Heat Exchangers Fitted With Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
23
), pp.
4939
4952
.
13.
Jubran
,
B. A.
,
Hamdan
,
M. A.
, and
Abdualh
,
R. M.
, 1993, “
Enhanced Heat Transfer, Missing Pin, and Optimization of Cylindrical Pin Fin Arrays
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
576
583
.
14.
Fand
,
R. M.
,
Varahasamy
,
M.
, and
Greer
,
L. S.
, 1993, “
Empirical Correlation Equations for Heat Transfer by Forced Convection From Cylinders Embedded in Porous Media That Account for the Wall Effect and Dispersion
,”
Int. J. Heat Mass Transfer
0017-9310,
36
(
36
), pp.
4407
4418
.
15.
Bejan
,
A.
, 1995, “
The Optimal Spacing for Cylinders in Cross Flow Forced Convection
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
767
770
.
16.
Wang
,
C. Y.
, 1999, “
Longitudinal Flow Past Cylinders Arranged in a Triangular Array
,”
Appl. Math. Model.
0307-904X,
23
(
3
), pp.
219
230
.
17.
Wang
,
C. Y.
, 2001, “
Stokes Flow Through a Rectangular Array of Circular Cylinders
,”
Fluid Dyn. Res.
0169-5983,
29
(
2
), pp.
65
80
.
18.
Layeghi
,
M.
, and
Nouri-Borujerdi
,
A.
, 2004, “
Fluid Flow and Heat Transfer Around Circular Cylinders in Presence and No-Presence of Porous Media
,”
J. Porous Media
1091-028X,
7
(
3
), pp.
70
79
.
19.
Yagi
,
S.
, and
Wakao
,
N.
, 1959, “
Heat and Mass Transfer From Wall to Fluid in Packed Beds
,”
AIChE J.
0001-1541,
5
(
1
), pp.
79
85
.
20.
Yagi
,
S.
, and
Kunii
,
D.
, 1960, “
Studies on Heat Transfer Near Wall Surface on Packed Tubes
,”
AIChE J.
0001-1541,
6
(
1
), pp.
97
104
.
21.
Ferziger
,
J. H.
, and
Peric’
,
M.
, 1999,
Computational Methods for Fluid Dynamics
,
Springer-Verlag
,
Berlin
.
22.
Barth
,
T. J.
, and
Jespersen
,
D.
, 1989, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
AIAA 27th Aerospace Sciences Meeting, Reno, NV
, Paper No. AIAA-89-0366.
23.
Leonard
,
B. P.
, 1995, “
Order of Accuracy of Quick and Related Convection–Diffusion Schemes
,”
Appl. Math. Model.
0307-904X,
19
, p.
640
.
24.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
You do not currently have access to this content.