The critical heat flux (CHF) condition needs to be well understood for designing miniature devices involving two-phase flow. Experiments were performed to determine the CHF condition for a single stainless steel tube having an inside diameter of 0.427mm subjected to uniform heat flux boundary conditions. The effects of mass flux, pressure, and exit quality on the CHF were investigated. The experimental results show that the CHF increases with an increase in mass flux and exit pressure. For all exit pressures, the CHF decreased with an increase in quality in the subcooled region, but with a further increase in quality (near zero quality and above), the CHF was found to have an increasing trend with quality (up to about 25% quality). CHF values in this region were much higher than those in the subcooled region. This suggests that even at very low qualities, the void fraction becomes appreciable, which results in an increase in the average velocity, thereby increasing the CHF limit.

1.
Moore
,
G.
, 1965, “
Cramming More Components Onto Integrated Circuits
,”
Electronics
0013-5070,
38
(
8
), pp.
114
117
.
2.
Hannemann
,
R. J.
, 2003, “
Thermal Control of Electronics: Perspectives and Prospects
,”
Rohsenow Symposium on Future Trends in Heat Transfer
, Warren M. Rohsenow Heat and Mass Transfer Laboratory,
Massachusetts Institute of Technology, Cambridge, MA
.
3.
Kakac
,
S.
, and
Liu
,
H.
, 1998,
Heat Exchangers: Selection, Rating and Thermal Design
,
CRC
,
Boca Raton, FL
, Chap. 9, pp.
903
904
.
4.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
, 2003, “
Evolution of Microchannel Flow Passages—Thermohydraulic Performance and Fabrication Technology
,”
Heat Transfer Eng.
0145-7632,
24
(
1
), pp.
3
17
.
5.
Vandervort
,
C. L.
,
Bergles
,
A. E.
, and
Jensen
,
M. K.
, 1994, “
An Experimental Study of Critical Heat Flux in Very High Heat Flux Subcooled Boiling
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
161
173
.
6.
Celata
,
G. P.
,
Cumo
,
M.
, and
Mariani
,
A.
, 1993, “
Burnout in Highly Subcooled Water Flow Boiling in Small Diameter Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
36
(
5
), pp.
1269
1285
.
7.
Celata
,
G. P.
,
Cumo
,
M.
, and
Mariani
,
A.
, 1997, “
Geometrical Effects on the Subcooled Flow Boiling Critical Heat Flux
,”
Rev. Gen. Therm.
0035-3159,
36
, pp.
807
814
.
8.
Nariai
,
H.
,
Inasaka
,
F.
, and
Uehara
,
K.
, 1989, “
Critical Heat Flux in Narrow Tubes with Uniform Heating
,”
Heat Transfer-Jpn. Res.
0096-0802,
18
, pp.
21
30
.
9.
Bergles
,
A. E.
, and
Rohsenow
,
W. M.
, 1962, “
Forced-Convection Surface-Boiling Heat Transfer and Burnout in Tubes of Small Diameter
,”
Massachusetts Institute of Technology
Report No. AF 19(604)-7344; U.S. Atomic Energy Commission DSR Report 8767-21.
10.
Roach
,
G. M.
, Jr.
,
Abdel-Khalik
,
S. I.
,
Ghiaasiaan
,
S. M.
,
Dowling
,
M. F.
, and
Jeter
,
S. M.
, 1997, “
Low Flow Critical Heat Flux in Heated Microchannels
,”
Nucl. Sci. Eng.
0029-5639,
131
, pp.
411
425
.
11.
Oh
,
C. H.
, and
Englert
,
S. B.
, 1993, “
Critical Heat Flux for Low Flow Boiling in Vertical Uniformly Heated Thin Rectangular Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
36
(
2
), pp.
325
335
.
12.
Lowdermilk
,
W. H.
,
Lanzo
,
C. D.
, and
Siegel
,
B. L.
, 1958, “
Investigation of Boiling Burnout and Flow Instability for Water Flowing in Tubes
,” Report No. NACA-TN-4382.
13.
Lazarek
,
G. M.
, and
Black
,
S. H.
, 1982, “
Evaporative Heat Transfer, Pressure Drop and Critical Heat Flux in a Small Vertical Tube with R-113
,”
Int. J. Heat Mass Transfer
0017-9310,
25
(
7
), pp.
945
960
.
14.
Bowers
,
M. B.
, and
Mudawar
,
I.
, 1994, “
High Flux Boiling in Low Flow Rate, Low Pressure Drop Mini-Channel and Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
2
), pp.
321
332
.
15.
Yu
,
W.
,
France
,
D. M.
,
Wambsganss
,
M. W.
, and
Hull
,
J. R.
, 2002, “
Two-Phase Pressure Drop, Boiling Heat Transfer, and Critical Heat Flux to Water in a Small-Diameter Horizontal Tube
,”
Int. J. Multiphase Flow
0301-9322,
28
, pp.
927
941
.
16.
Kamidis
,
D. E.
, and
Ravigururajan
,
T. S.
, 1999, “
Single and Two-Phase Refrigerant Flow in Mini-Channels
,”
Proceedings of NHTC2000: 33rd National Heat Transfer Conference
, Albuquerque, NM, pp.
1
8
.
17.
Lezzi
,
A. M.
,
Niro
,
A.
, and
Beretta
,
G. P.
, 1994, “
Experimental Data on CHF for Forced Convection Water Boiling in Long Horizontal Capillary Tubes
,”
Proceedings of the Tenth International Heat Transfer Conference
, Rugby, UK, Vol.
7
, pp.
491
496
.
18.
Jiang
,
L.
,
Wong
,
M.
, and
Zohar
,
Y.
, 1999, “
Phase Change in Microchannel Heat Sinks with Integrated Temperature Sensors
,”
J. Microelectromech. Syst.
1057-7157,
8
, pp.
358
365
.
19.
Wojtan
,
L.
,
Revellin
,
R.
, and
Thome
,
J. R.
, 2006, “
Investigation of Saturated Critical Heat Flux in a Single Uniformly Heated Microchannel
,”
Exp. Therm. Fluid Sci.
0894-1777,
30
, pp.
765
774
.
20.
Kuan
,
W. K.
, and
Kandlikar
,
S. G.
, 2006, “
Critical Heat Flux Measurement and Model for Refrigerant-123 Under Stabilized Flow Conditions in Microchannels
,” ASME Paper No. IMECE2006-13310.
21.
Koşar
,
A.
,
Kuo
,
C.-J.
, and
Peles
,
Y.
, 2005, “
Reduced Pressure Boiling Heat Transfer in Rectangular Microchannels With Interconnected Reentrant Cavities
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
1106
1114
.
22.
Zhang
,
W.
,
Hibiki
,
T.
,
Mishima
,
K.
, and
Mi
,
Y.
, 2006, “
Correlation of Critical Heat Flux for Flow Boiling of Water in Mini-Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
1058
1072
.
23.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
24.
Celata
,
G. P.
,
Cumo
,
M.
,
Guglielmi
,
M.
, and
Zummo
,
G.
, 2002, “
Experimental Investigation of Hydraulic and Single-Phase Heat Transfer in 0.13‐mm Capillary Tube
,”
Microscale Thermophys. Eng.
1089-3954,
6
, pp.
85
97
.
25.
Peng
,
X. F.
, and
Peterson
,
G. P.
, 1996, “
Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
2599
2608
.
26.
Fukuyama
,
Y.
, and
Hirata
,
H.
, 1982, “
Boiling Heat Transfer Characteristics With High Mass Flux and Disappearance of CHF Following to DNB
,”
Proceedings of the Seventh International Heat Transfer Conference
,
Hemisphere
,
Washington, DC
, Vol.
4
, pp.
273
278
.
27.
Hosaka
,
H.
,
Mirata
,
M.
, and
Kasagi
,
N.
, 1990, “
Forced Convective Subcooled Boiling Heat Transfer and CHF in Small Diameter Tubes
,”
Proceedings of the Ninth International Heat Transfer Conference
,
Hemisphere
,
Washington, DC
, Vol.
2
, pp.
129
134
.
28.
Hall
,
D. D.
, and
Mudawar
,
I.
, 2000, “
Critical Heat Flux (CHF) for Water Flow in Tubes-II. Subcooled CHF Correlations
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
2605
2640
.
29.
Qu
,
W.
, and
Mudawar
,
I.
, 2004, “
Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
2045
2059
.
You do not currently have access to this content.