Using an approach that couples genetic algorithm (GA) with conventional numerical simulations, optimization of the geometric configuration of a phase-change material based heat sink (PBHS) is performed in this paper. The optimization is done to maximize the sink operational time (SOT), which is the time for the top surface temperature of the PBHS to reach the critical electronics temperature (CET). An optimal solution for this complex multiparameter problem is sought using GA, with the standard numerical simulation seeking the SOT forming a crucial step in the algorithm. For constant heat dissipation from the electronics (constant heat flux) and for three typical PBHS depths (A), predictive empirical relations are deduced from the GA based simulation results. These correlations relate the SOT to the amount of phase change material to be used in the PBHS (φ), the PBHS depth (A), and the heat-spreader thickness (s), a hitherto unconsidered variable in such designs, to the best of the authors’ knowledge. The results show that for all of the typical PBHS depths considered, the optimal heat-spreader thickness is 2.5% of the PBHS depth. The developed correlations predict the simulated results within 4.6% for SOT and 0.32% for ϕ and empowers one to design a PBHS configuration with maximum SOT for a given space restriction or the most compact PBHS design for a given SOT.

1.
Joshi
,
Y. K.
, and
Garimella
,
S. V.
, 2003, “
Thermal Challenges in Next Generation Electronic Systems
,”
Microelectron. Eng.
0167-9317,
34
(
3
), p.
169
.
2.
Bass
,
J. C.
,
Allen
,
D. T.
,
Ghamaty
,
S.
, and
Elsner
,
N. B.
, 2004, “
New Technology for Thermoelectric Cooling
,”
20th IEEE SEMI-THERM Symposium
, pp.
18
20
.
3.
Alawadhi
,
E. M.
, and
Amon
,
C. H.
, 2002, “
Thermal Analyses of a PCM Thermal Control Unit for Portable Electronic Devices: Experimental and Numerical Studies
,”
2002 Inter Society Conference on Thermal Phenomena
, pp.
466
475
.
4.
Chow
,
L. C.
, and
Zhong
,
J. K.
, 1996, “
Thermal Conductivity Enhancement for Phase Change Storage Media
,”
Int. Commun. Heat Mass Transfer
0735-1933,
23
(
1
), pp.
91
100
.
5.
Pal
,
D.
, and
Joshi
,
Y. K.
, 1997, “
Application of Phase Change Materials to Thermal Control of Electronics Modules: A Computational Study
,”
ASME J. Electron. Packag.
1043-7398,
119
, pp.
40
50
.
6.
Bujage
,
I.
, 1997, “
Enhancing Thermal Response of Latent Heat Storage Systems
,”
Int. J. Energy Res.
0363-907X,
21
, pp.
759
766
.
7.
Krishnan
,
S.
, and
Garimella
,
S. V.
, 2004, “
Analysis of a Phase Change Energy Storage System for Pulsed Power Dissipation
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
27
(
1
), pp.
191
199
.
8.
Krishnan
,
S.
,
Garimella
,
S. V.
, and
Kang
,
S. S.
, 2004, “
A Novel Hybrid Heat Sink Using Phase Change Materials for Transient Thermal Management of Electronics
,”
Proceedings of Inter Society Conference on Thermal Phenomena (ITHERM04)
, pp.
310
318
.
9.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, 2005, “
A Two Temperature Model for Solid-Liquid Phase Change in Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
127
(
9
), pp.
995
1004
.
10.
Stritih
,
U.
, and
Novak
,
P.
, 2000, “
Heat Transfer Enhancement at Phase Change Processes
,”
Terrastock Eighth International Conference on Thermal Energy Storage
, Aug. 28–Sep. 1, Vol.
1
, pp.
333
338
.
11.
Zheng
,
N.
, and
Wirtz
,
R. A.
, 2004, “
A Hybrid Thermal Energy Storage Device, Part 1: Design Methodology
,”
ASME J. Electron. Packag.
1043-7398,
126
, pp.
1
7
.
12.
Zheng
,
N.
, and
Wirtz
,
R. A.
, 2004, “
A Hybrid Thermal Energy Storage Device, Part 2: Thermal Performance Figures of Merit
,”
ASME J. Electron. Packag.
1043-7398,
126
, pp.
8
13
.
13.
Shatikian
,
V.
,
Ziskind
,
G.
, and
Letan
,
R.
, 2005, “
Numerical Investigation of a PCM-Based Heat Sink with Internal Fins
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
17
), pp.
3689
3706
.
14.
Akhilesh
,
R.
,
Narasimhan
,
A.
, and
Balaji
,
C.
, 2005, “
Method to Improve Geometry for Heat Transfer Enhancement in PCM Composite Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
13
), pp.
2759
2770
.
15.
Nayak
,
K. C.
,
Saha
,
S. K.
,
Srinivasan
,
K.
, and
Dutta
,
P.
, 2006, “
A Numerical Model for Heat Sinks With Phase Change Materials and Thermal Conductivity
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
11–12
), pp
1833
1844
.
16.
Goldberg
,
D. E.
, 1989,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Addison-Wesley
,
Reading, MA
.
17.
Holland
,
J. H.
, 1992,
Adaption in Natural and Artificial Systems
,
MIT Press
,
Cambridge, MA
.
18.
Manish
,
C. T.
,
Yan
,
F.
, and
Urmila
,
M. D.
, 1999, “
Optimal Design of Heat Exchangers: A Genetic Algorithm Framework
,”
Ind. Eng. Chem. Res.
0888-5885,
38
, pp.
456
467
.
19.
Hilbert
,
R.
,
Janiga
,
G.
,
Baron
,
R.
, and
Thévenin
,
D.
, 2006, “
Multi-Objective Shape Optimization of a Heat Exchanger Using Parallel Genetic Algorithms
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
15–16
), pp.
2567
2577
.
20.
Lamberg
,
P.
, and
Siren
,
K.
, 2003, “
Approximate Analytical Model for Solidification in a Finite PCM Storage With Internal Fins
,”
Appl. Math. Model.
0307-904X,
27
, pp.
491
513
.
21.
Cengel
,
Y. A.
, 2003,
Heat Transfer: A Practical Approach
,
2nd ed.
,
McGraw-Hill
,
New York
.
22.
Shamsundar
,
N.
, and
Sparrow
,
E. M.
, 1975, “
Analysis of Multidimensional Conduction Phase Change Via Enthalpy Model
,”
ASME J. Heat Transfer
0022-1481,
97
, pp.
333
340
.
23.
Krishnan
,
S.
, and
Garimella
,
S. V.
, 2004, “
Thermal Management of Transient Power Spikes in Electronics—Phase Change Energy Storage Or Copper Heat Sinks?
,”
ASME J. Electron. Packag.
1043-7398,
126
, pp.
308
316
.
24.
Bejan
,
A.
, 1993,
Heat Transfer
,
Wiley
,
New York
.
25.
Larranaga
,
P.
,
Kuijpers
,
C. M. H.
,
Murga
,
R. H.
, and
Dizdarevic
,
S.
, 1999, “
Genetic Algorithms for the Traveling Salesman Problem: A Review of Representations and Operators
,”
Artif. Intell. Rev.
0269-2821,
13
(
2
), pp.
129
170
.
26.
Michalewicz
,
Z.
, 1996,
Genetic Algorithms + Data Structures = Evolution Programs
,
3rd ed.
,
Springer
,
Berlin
.
27.
Haji-Sheikh
,
A.
,
Eftekhar
,
J.
, and
Lou
,
D.
, 1982, “
Properties of Paraffin Wax as a Thermal Storage Medium
,”
Proceedings of AIAA∕ASME Joint Thermo-Physics, Fluids, Plasma and Heat Transfer Conference, AIAA
.
28.
Leland
,
J.
, and
Recktenwald
,
G.
, 2003, “
Optimization of a Phase Change Heat Sink for Extreme Environments
,”
Proceedings of the 19th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, Mar. 11–13.
You do not currently have access to this content.