The values of absorption coefficients of gasoline fuel (BP Pump Grade 95 RON ULG (research octane number unleaded gasoline)), 2,2,4-trimethylpentane (CH3)2CHCH2C(CH3)3 (iso-octane) and 3-pentanone CH3CH2COCH2CH3 have been measured experimentally in the range of wavelengths between 0.2μm and 4μm. The values of the indices of absorption, calculated based on these coefficients, have been compared with those previously obtained for low sulphur ESSO AF1313 diesel fuel. These values are generally lower for pure substances (e.g., iso-octane and 3-pentanone) than for diesel and gasoline fuels. The values of the average absorption efficiency factor for all fuels are approximated by a power function aRdb, where Rd is the droplet radius. a and b in turn are approximated by piecewise quadratic functions of the radiation temperature, with the coefficients calculated separately in the ranges of droplet radii 25μm, 550μm, 50100μm, and 100200μm for all fuels. This new approximation is shown to be more accurate compared with the case when a and b are approximated by quadratic functions or fourth power polynomials of the radiation temperature, with the coefficients calculated in the whole range 2200μm. This difference in the approximations of a and b, however, is shown to have little effect on modeling of fuel droplet heating and evaporation in conditions typical for internal combustion engines, especially in the case of diesel fuel and 3-pentanone.

1.
Tuntomo
,
A.
, 1990, “
Transport Phenomena in a Small Particle with Internal Radiant Absorption
,” Ph.D. dissertation, University of California at Berkeley, Berkeley, CA.
2.
Tuntomo
,
A.
,
Tien
,
C. L.
, and
Park
,
S. H.
,1991, “
Internal Distribution of Radiant Absorption in a Spherical Particle
,”
ASME J. Heat Transfer
0022-1481,
113
, pp.
402
412
.
3.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
,
2nd ed.
,
Academic
, Amsterdam, The Netherlands.
4.
Viskanta
,
R.
, 2005,
Radiative Transfer in Combustion Systems: Fundamentals & Applications
,
Begel House, Inc.
, New York, Wallingford, UK.
5.
Chapman
,
M.
,
Friedman
,
M. C.
, and
Aghan
,
A.
, 1983, “
A Time-Dependent Spatial Model For Heat Transfer in Diesel Engines
,” SAE Paper No. 831725.
6.
Mengüc
,
M. P.
,
Viskanta
,
R.
, and
Ferguson
,
C. R.
, 1985, “
Multidimensional Modeling of Radiative Heat Transfer in Diesel Engines
,” SAE Paper No. 850503.
7.
Dombrovsky
,
L. A.
, 2002, “
Spectral Model of Absorption and Scattering of Thermal Radiation by Diesel Fuel Droplets
,”
High Temp.
0018-151X,
40
, pp.
242
248
.
8.
Sazhina
,
E. M.
,
Sazhin
,
S. S.
,
Heikal
,
M. R.
, and
Bardsley
,
M. E. A.
, 2000, “
The P-l Model for Thermal Radiation Transfer: Application to Numerical Modeling of Combustion Processes in Diesel Engines
,”
Proceedings of the 16th IMACS World Congress 2000 on Scientific Computation, Applied Mathematics and Simulation
, Lausanne, Switzerland, 21–25 August, (CD) Paper No. 125-10.
9.
Dombrovsky
,
L. A.
,
Sazhin
,
S. S.
,
Sazhina
,
E. M.
,
Feng
,
G.
,
Heikal
,
M. R.
,
Bardsley
,
M. E. A.
, and
Mikhalovsky
,
S. V.
, 2001, “
Heating and Evaporation of Semi-transparent Diesel Fuel Droplets in the Presence of Thermal Radiation
,”
Fuel
0016-2361,
80
(
11
), pp.
1535
1544
.
10.
Sazhin
,
S. S.
,
Abdelghaffar
,
W. A.
,
Sazhina
,
E. M.
,
Mikhalovsky
,
S. V.
,
Meikle
,
S. T.
, and
Bai
,
C.
, 2004, “
Radiative Heating of Semi-transparent Diesel Fuel Droplets
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
105
109
;
Sazhin
,
S. S.
,
Abdelghaffar
,
W. A.
,
Sazhina
,
E. M.
,
Mikhalovsky
,
S. V.
,
Meikle
,
S. T.
, and
Bai
,
C.
, 2004, “
Radiative Heating of Semi-transparent Diesel Fuel Droplets
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
490
491
.
11.
Sazhin
,
S. S.
,
Dombrovsky
,
L. A.
,
Krutitskii
,
P. A.
,
Sazhina
,
E. M.
, and
Heikal
,
M. R.
, 2002, “
Analytical and Numerical Modeling of Convective and Radiative Heating of Fuel Droplets in Diesel Engines
,”
Proceedings of the 12th International Heat Transfer Conference
, Grenoble, France, August 18–23,
Editions Scientifique et Medicale
, Elsevier SAS, Vol.
1
, pp.
699
704
.
12.
Lage
,
P. L. C.
, and
Rangel
,
R. H.
, 1993, “
Single Droplet Vaporization Including Thermal Radiation Absorption
,”
J. Thermophys. Heat Transfer
0887-8722,
7
(
3
), pp.
502
509
.
13.
Dombrovsky
,
L. A.
, and
Sazhin
,
S. S.
, 2003, “
Absorption of Thermal Radiation in a Semi-transparent Spherical Droplet: A Simplified Model
,”
Int. J. Heat Fluid Flow
0142-727X,
24
(
6
), pp.
919
927
.
14.
Dombrovsky
,
L. A.
, and
Sazhin
,
S. S.
, 2004, “
Absorption of External Thermal Radiation in Asymmetrically Illuminated Droplets
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
87
, pp.
119
135
.
15.
Dombrovsky
,
L. A.
, 2004, “
Absorption of Thermal Radiation in Large Semi-transparent Particles at Arbitrary Illumination of a Polydisperse System
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
5511
5522
.
16.
Sazhin
,
S. S.
,
Krutitskii
,
P. A.
,
Abdelghaffar
,
W. A.
,
Sazhina
,
E. M.
,
Mikhalovsky
,
S. V.
,
Meikle
,
S. T.
, and
Heikal
,
M. R.
, 2004, “
Transient Heating of Diesel Fuel Droplets
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3327
3340
.
17.
Sazhin
,
S. S.
,
Abdelghaffar
,
W. A.
,
Krutitskii
,
P. A.
,
Sazhina
,
E. M.
, and
Heikal
,
M. R.
, 2005, “
New Approaches to Numerical Modeling of Droplet Transient Heating and Evaporation
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
19–20
), pp.
4215
4228
.
18.
Abramzon
,
B.
, and
Sazhin
,
S.
, 2005, “
Droplet Vaporization Model in the Presence of Thermal Radiation
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1868
1873
.
19.
Sazhin
,
S. S.
, 2006, “
Advanced Models of Fuel Droplet Heating and Evaporation
,”
Prog. Energy Combust. Sci.
0360-1285,
32
(
2
), pp.
162
214
.
20.
Dombrovsky
,
L. A.
,
Sazhin
,
S. S.
,
Mikhalovsky
,
S. V.
,
Wood
,
R.
, and
Heikal
,
M. R.
, 2003, “
Spectral Properties of Diesel Fuel Droplets
,”
Fuel
0016-2361,
82
pp.
15
22
.
21.
Dombrovsky
,
L. A.
, 2002, “
A Spectral Model of Absorption and Scattering of Thermal Radiation by Diesel Fuel Droplets
,”
High Temp.
0018-151X,
40
(
2
), pp.
242
248
.
22.
Sazhin
,
S. S.
,
Kristyadi
,
T.
,
Abdelghaffar
,
W. A.
, and
Heikal
,
M. R.
, 2006, “
Models for Fuel Droplet Heating and Evaporation: Comparative Analysis
,”
Fuel
0016-2361,
85
(
12–13
), pp.
1613
1630
.
23.
Flynn
,
P. F.
,
Durrett
,
R. P.
,
Hunter
,
G. L.
,
zur Loye
,
A. O.
,
Akinyemi
,
O. C.
,
Dec
,
J. E.
, and
Westbrook
,
C. K.
, 1999, “
Diesel Combustion: An Integrated View Combining Laser Diagnostics, Chemical Kinetics, and Empirical Validation
,” SAE Report No. 1999-01-0509.
24.
Abramzon
,
B.
, and
Sazhin
,
S.
, 2006, “
Convective Vaporization of Fuel Droplets with Thermal Radiation Absorption
,”
Fuel
0016-2361,
85
(
1
), pp.
32
46
.
25.
Dombrovsky
,
L. A.
, and
Sazhin
,
S. S.
, 2003, “
A Parabolic Temperature Profile Model for Heating of Droplets
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
535
537
.
26.
Schlichting
,
H.
, and
Gersten
,
K.
, 2000,
Boundary Layer Theory
,
Springer
, Berlin, Germany.
27.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
, 1999,
An Introduction to Computational Fluid Dynamics
,
Longman
, Harlow, UK.
28.
Abramzon
,
B.
, and
Sirignano
,
W. A.
, 1989, “
Droplet Vaporization Model for Spray Combustion Calculations
,”
Int. J. Heat Mass Transfer
0017-9310,
32
, pp.
1605
1618
.
29.
Shishkova
,
I. N.
, and
Sazhin
,
S. S.
, 2007, “
A Numerical Algorithm for Kinetic Modelling of Evaporation Processes
,”
J. Comput. Phys.
0021-9991,
218
, pp.
635
653
.
30.
Sazhin
,
S. S.
,
Shishkova
,
I. N.
,
Kryukov
,
A. P.
,
Levashov
,
V. Yu
,
, and
Heikal
,
M. R.
, 2007, “
Evaporation of Droplets into a Background Gas: Kinetic Modelling
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
2675
2691
.
31.
Chin
,
J. S.
, and
Lefebvre
,
A. H.
, 1985, “
The Role of the Heat-up Period in Fuel Drop Evaporation
,”
Int. J. Turbo Jet Engines
0334-0082,
2
, pp.
315
325
.
32.
Handbook of Aviation Fuel Properties
, 1984, American Petroleum Institute CRC Technical Report No. 530.
33.
Reid
,
R. C.
, and
Sherwood
,
T. K.
, 1958,
The Properties of Gases and Liquids
,
McGraw–Hill
, London, U.K.
34.
Hirschfelder
,
J. O.
,
Curtiss
,
C. F.
, and
Bird
,
R. B.
, 1967,
Molecular Theory of Gases and Liquids
,
4th ed.
,
Wiley
, New York.
35.
Maxwell
,
J. B.
, 1950,
Data Book on Hydrocarbons: Application to Process Engineering
,
van Nostrand
, New York.
36.
Touloukian
,
Y. S.
, and
Makita
,
T.
, 1970,
Specific Heat. Nonmetallic Liquids and Gases
,
IFI/Plenum
, New York.
37.
Raznjevic
,
K.
, 1976,
Handbook of Thermodynamics: Tables and Charts
,
McGraw-Hill
, London, U.K.
38.
Paredes
,
M. L. L.
,
Nobrega
,
R.
, and
Tavares
,
F. W.
, 2000, “
A Completely Analytical Equation of State for Mixture of Square-Well Chain Fluid of Variable Well Width
,”
Proceedings 19th Inter American Congress of Chemical Engineering
,
Agios de Sao Pedro
, Brazil, 24–27 September, Paper No. 396.
39.
CRC Handbook of Chemistry and Physics
,
86th ed.
, 2005,
Taylor & Francis
, Boca Raton, FL, pp.
6
-35–6-
190
.
40.
Hales
,
J. L.
, 1967, “
Thermodynamic Properties of Organic Oxygen Compounds. Part 18. Vapour Heat Capacities and Heats of Vaporization of Ethyl Ketone, Ethyl Propyl Ketone, Methyl Isopropyl Ketone, and Methyl Phenyl Ether
,”
Trans. Faraday Soc.
0014-7672,
63
, pp.
1876
1879
.
41.
Lee
,
L.
, and
Chuang
,
M.
, 1997, “
Excess Volumes of Cyclohexane with 2-Propanone, 2-Butanone, 3-Pentanone, 4-Methyl-2-Penthanone, 1-Propanoland 2-Propanol and Ethanoic Acid + 1-Propanol Systems
,”
J. Chem. Eng. Data
0021-9568,
42
, pp.
850
853
.
42.
Fermeglia
,
M.
,
Lapasin
,
R.
, and
Torriano
,
G.
, 1990, “
Excess Volumes and Viscosities of Binary Systems Containing 4-Methyl-3-Penthanone
,”
J. Chem. Eng. Data
0021-9568,
35
, pp.
260
265
.
You do not currently have access to this content.