Convective heat transfer in aluminum metal foam sandwich panels is investigated with potential applications to actively cooled thermal protection systems in hypersonic and re-entry vehicles. The size effects of the metal foam core are experimentally investigated and the effects of foam thickness on convective transfer are established. Four metal foam specimens are utilized with a relative density of 0.08 and pore density of 20 pores per inch (ppi) in a range of thickness from 6.4mmto25.4mm, in increments of approximately 6mm. An exact-shape-function finite element model is developed that envisions the foam as randomly oriented cylinders in cross flow with an axially varying coolant temperature field. A fully developed velocity profile is obtained through a semi-empirical, volume-averaged form of the momentum equation for flow through porous media, and used in the numerical analysis. The experimental results show that larger foam thicknesses produce increased heat transfer levels, but that this effect diminishes for thicker foams. The finite element simulations capture the thickness dependence of the heat transfer process and good agreement between experimental and numerical results is obtained for larger foam thicknesses.

1.
Rakow
,
J. F.
, and
Waas
,
A. M.
, 2005, “
Thermal Buckling of Metal Foam Sandwich Panels for Convective Thermal Protection Systems
,”
J. Spacecr. Rockets
0022-4650,
42
(
5
), pp.
832
844
.
2.
Weber
,
R. M.
,
Lage
,
J. L.
,
Price
,
D. C.
, and
Weinert
,
A. K.
, 1996, “
Numerical Study of a Low Permeability Microporous Heat Sink for Cooling Phased-Array Radar Systems
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
3633
3647
.
3.
Price
,
D. C.
,
Antohe
,
B. V.
,
Lage
,
J. L.
, and
Weber
,
R. M.
, 1996, “
Numerical Characterization of MicroHeat Exchanges using Experimentally Tested Porous Aluminum Layers
,”
Int. J. Heat Fluid Flow
0142-727X,
19
, pp.
594
603
.
4.
Porneala
,
D. C.
,
Lage
,
J. L.
,
Narasimhan
,
A.
, and
Price
,
D. C.
, 2004, “
Experimental Study of Forced Convection through Microporous Enhanced Heat Sinks: Enhanced Heat Sinks for Cooling Airborne Microwave Phased-Array Radar Antenas
,”
Emerging Technologies and Techniques in Porous Media
, Vol.
28
,
Kluwer
,
Dordrecht, The Netherlands
, pp.
433
452
.
5.
Pavel
,
B. I.
, and
Mohamad
,
A. A.
, 2004, “
Experimental Investigation of the Potential of Metallic Porous Insert in Enhancing Forced Convective Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
540
545
.
6.
Pavel
,
B. I.
, and
Mohamad
,
A. A.
, 2004, “
An Experimental and Numerical Study on Heat Transfer Enhancement for Heat Exchangers Fitted With Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
4939
4952
.
7.
Mohamad
,
A. A.
, 2003, “
Heat Transfer Enhancements in Heat Exchangers Fitted With Porous Media, Part i: Constant Wall Temperature
,”
J. Therm. Sci.
1003-2169,
42
, pp.
385
395
.
8.
Mohamad
,
A. A.
, 2003, “
Porous Media Utilizations for Heat Transfer Enhancements
,”
Proceedings of the NATO Advanced Study Institute on Porous Media
,
Neptum-Olimp
,
Romania
, June 9–20, pages
358
367
.
9.
Poulikakos
,
D.
,
Boomsma
,
K.
, and
Zwick
,
F.
, 2003, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
0167-6636,
35
, pp.
1161
1176
.
10.
Boomsma
,
K.
, and
Poulikakos
,
D.
, 2002, “
The Effects of Compression on Pore Size Variation on the Liquid Flow Characteristics in Metal Foams
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
263
272
.
11.
Poulikakos
,
D.
,
Boomsma
,
K.
, and
Ventikos
,
Y.
, 2003, “
Simulations of Flow through Open Cell Metal Foams Using an Idealized Periodic Cell Structure
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
825
834
.
12.
Stone
,
H. A.
,
Lu
,
T. J.
, and
Ashby
,
M. F.
, 1998, “
Heat Transfer in Open-Cell Metal Foams
,”
Acta Mater.
1359-6454,
46
(
10
), pp.
3619
3635
.
13.
Bastawros
,
A. F.
, and
Evans
,
A. G.
, 1997, “
Characterisation of Open-Cell Aluminum Alloy-Foams as Heat Sinks for High Power Electronic Devices
,”
Proceedings of the Symposium on the Application of Heat Transfer in Microelectronics Packaging IMECE
, Dallas, TX.
14.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 1999, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
557
565
.
15.
Calmidi
,
V. V.
,
Bhattacharya
,
A.
, and
Mahajan
,
R. L.
, 2002, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1017
1031
.
16.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 2002,
Fundamentals of Heat and Mass Transfer
,
5th ed.
,
J Wiley
,
New York
.
17.
Chandrupatla
,
T.
, and
Belegundu
,
A.
, 1997,
Introduction of Finite Elements in Engineering
,
2nd ed.
,
Prentice–Hall
,
Upper Saddle River, NJ
.
18.
Vafai
,
K.
, and
Kim
,
S. J.
, 1989, “
Forced Convection in a Channel Filled with a Porous Medium: An Exact Solution
,”
ASME J. Heat Transfer
0022-1481,
111
, pp.
1103
1106
.
19.
White
,
F. M.
, 1991,
Viscous Fluid Flow
,
2nd ed.
,
McGraw–Hill
,
New York
.
20.
Price
,
D. C.
,
Antohe
,
B. V.
,
Lage
,
J. L.
, and
Weber
,
R. M.
, 1997, “
Experimental Determination of Permeability and Inertia Coefficients of Mechanically Compressed Aluminum Porous Matrices
,”
ASME J. Fluids Eng.
0098-2202,
119
, pp.
404
412
.
21.
Nield
,
D. A.
,
Lage
,
J. L.
,
Narasimhan
,
A.
, and
Porneala
,
D. C.
, 2001, “
Experimental Verification of Two New Theories Predicting Temperature-Dependent Viscosity Effects on the Forced Convection in a Porous Channel
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
948
951
.
You do not currently have access to this content.