Thermal-hydraulic performance data for offset-strip fin arrays are readily available in the range Re<10,000. However, in emerging applications in automotive and aerospace systems, where fan power is not a constraint and compactness is important, it may be desirable to operate offset-strip fin heat exchangers at very high Reynolds numbers. In this paper, friction factor and mass transfer performance of an offset-strip fin array at Reynolds numbers between 10,000 and 120,000 are characterized. A scale-model, eight-column fin array is used in pressure drop and naphthalene sublimation experiments, and the data are compared to predictions of performance given by available analytical models and extrapolations of the best available correlations. The friction factor data follow the correlation-predicted trend of decreasing monotonically as the Reynolds number is increased to 20,000. However, at higher Reynolds numbers, the friction factor increases as the Reynolds number increases and local maxima are observed in the data. Over the range investigated, the modified Colburn j factor decreases monotonically as the Reynolds number increases. For Reynolds numbers in the range 10,000<Re<120,000, well beyond that covered by state-of-the-art correlations, both the friction factor and Colburn j factor are roughly twice that predicted by extrapolating the best available correlations. The higher-than-predicted Colburn j factor at very high Reynolds numbers is encouraging for the use of offset-strip fin heat exchangers in emerging applications where compactness is of high importance.

1.
Manglik
,
R. M.
, and
Bergles
,
A. E.
, 1995, “
Heat Transfer and Pressure Drop Correlations for the Rectangular Offset Strip Fin Compact Heat Exchanger
,”
Exp. Therm. Fluid Sci.
0894-1777,
10
(
2
), pp.
171
180
.
2.
Joshi
,
H. M.
, and
Webb
,
R. L.
, 1987, “
Heat Transfer and Friction in the Offset Strip-Fin Heat Exchanger
,”
Int. J. Heat Mass Transfer
0017-9310,
30
(
1
), pp.
69
84
.
3.
Mochizuki
,
S.
, and
Yagi
,
Y.
, 1982, “
Characteristics of Vortex Shedding in Plate Arrays
,”
Flow Visualization II
,
W.
Merzkirch
, ed.,
Hemisphere
,
Washington, D.C.
, pp.
99
103
.
4.
DeJong
,
N. C.
, and
Jacobi
,
A. M.
, 1997, “
An Experimental Study of Flow and Heat Transfer in Parallel-Plate Arrays: Local, Row-by-Row, and Surface Average Behavior
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
6
), pp.
1365
1378
.
5.
Mochizuki
,
S.
, and
Yagi
,
Y.
, 1977, “
Heat Transfer and Friction Characteristics of Strip Fins
,”
Heat Transfer-Jpn. Res.
0096-0802,
6
(
3
), pp.
36
59
.
6.
Mochizuki
,
S.
,
Yagi
,
Y.
, and
Yang
,
W.-J.
, 1987, “
Transport Phenomena in Stacks of Interrupted Paralle-Plate Surfaces
,”
Exp. Heat Transfer
0891-6152,
1
(
2
), pp.
127
140
.
7.
Suzuki
,
K.
,
Hirai
,
E.
,
Miyake
,
T.
, and
Sato
,
T.
, 1985, “
Numerical and Experimental Studies on a Two-Dimensional Model of an Offset-Strip-Fin Type Compact Heat Exchanger Used at Low Reynolds Number
,”
Int. J. Heat Mass Transfer
0017-9310,
28
(
4
), pp.
823
836
.
8.
Suzuki
,
K.
,
Xi
,
G. N.
,
Inaoka
,
K.
, and
Hagiwara
,
Y.
, 1994, “
Mechanism of Heat Transfer Enhancement Due to Self-Sustained Oscillation for an In-Line Fin Array
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
1
), pp.
83
96
.
9.
Xi
,
G. N.
,
Hagiwara
,
Y.
, and
Suzuki
,
K.
, 1995, “
Flow Instability and Augmented Heat Transfer of Fin Arrays
,”
J. Enhanced Heat Transfer
1065-5131,
2
(
1–2
), pp.
23
32
.
10.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
, 1999, “
Modeling the f and j Characteristics of the Offset Strip Fin Array
,” American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD, No.
364-1
, pp.
91
100
.
11.
Churchill
,
S. W.
, and
Usagi
,
R.
, 1972, “
A General Expression for the Correlation of Rates of Transfer and Other Phenomena
,”
AIChE J.
0001-1541,
18
(
6
), pp.
1121
1128
.
12.
Goldstein
,
R. J.
, and
Cho
,
H. H.
, 1995, “
A Review of Mass Transfer Measurements Using Naphthalene Sublimation
,”
Exp. Therm. Fluid Sci.
0894-1777,
10
(
4
), pp.
416
434
.
13.
Eckert
,
E. R. G.
, 1976, “
Analogies to Heat Transfer Processes
,”
Measurements in Heat Transfer
,
E. R. G.
Eckert
and
R. J.
Goldstein
, eds.,
McGraw–Hill
,
Washington, D.C.
, pp.
397
423
.
14.
Simpson
,
R. L.
, and
Field
,
R. L.
, 1972, “
A Note on the Turbulent Schmidt and Lewis Numbers in a Boundary Layer
,”
Int. J. Heat Mass Transfer
0017-9310,
15
(
1
), pp.
177
180
.
15.
Lewis
,
J. S.
, 1971, “
A Heat-Mass Transfer Analogy Applied to Fully Developed Turbulent Flow in an Annulus
,”
J. Mech. Eng. Sci.
0022-2542,
13
(
4
), pp.
286
292
.
16.
Kays
,
W. M.
, and
London
,
A. L.
, 1984,
Compact Heat Exchangers
,
3rd ed.
,
McGraw–Hill
,
New York
.
17.
Sparrow
,
E. M.
, and
Hajiloo
,
A.
, 1980, “
Measurements of Heat Transfer and Pressure Drop for an Array of Staggered Plates Aligned Parrallel to an Air Flow
,”
J. Heat Transfer
0022-1481,
102
(
3
), pp.
426
432
.
18.
Eckert
,
E. R. G.
, and
Drake
,
R. M.
, 1972,
Analysis of Heat and Mass Transfer
,
McGraw–Hill
,
New York
.
19.
Hartnett
,
J. P.
, and
Eckert
,
E. R. G.
, 1957, “
Mass-Transfer Cooling in a Laminar Boundary Layer With Constant Fluid Properties
,”
Trans. ASME
0097-6822,
79
(
2
), pp.
247
254
.
20.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
(
1
), pp.
3
8
.
21.
Ge
,
H.
, 2002, “
Air-Side Heat Transfer Enhancement for Offset-Strip Fin Arrays Using Delta Wing Vortex Generators
,” Ph.D. thesis, University of Illinois, Urbana, Ill.
You do not currently have access to this content.