Owing to a uniform thickness, the fin material of a flat plate fin near to the tip does not participate optimally in transferring heat. On account of this, two new fin geometries of flat plate fins are proposed for improving the heat transfer rate per unit volume. These projected fin geometries, namely flat plate fin circumscribing a circular tube by providing quarter circular cut at the corners of the tip (FQCT) and flat plate fin circumscribing a circular tube having circular arc to cut at the tip (FCAT) are suggested. The thermal performance of the said geometric fins has been determined by a semianalytical method. By using a rigorous semianalytical technique, optimization have been demonstrated in a generalized scheme either by maximizing the rate of heat duty for a given fin volume or by minimizing the fin volume for a given heat transfer duty. The optimization study has also been made with the additional length constraints imposed on one or both sides of the fluid carrying tube. Finally, it can be demonstrated from the optimization study that two proposed fins, namely FQCT and FCAT, can dissipate more rate of heat than the FCT with an identical fin volume and thermophysical parameters. It can also be highlighted that the optimum FQCT and FCAT can transfer heat at a higher rate in comparison with the annular disk fin when a space constraint exists.

1.
Schmidt
,
E.
, 1926, “
Die Warmeubertragung durch Rippen
,”
Z. Ver. Dtsch. Inc.
,
70
, pp.
885
889
.
2.
Duffin
,
R.
, 1959, “
A Variational Problem Relating to Cooling Fins
,”
J. Math. Mech.
0095-9057,
8
, pp.
47
56
.
3.
Guceri
,
S.
, and
Maday
,
C. J.
, 1975, “
A Least Weight Circular Cooling Fins
,”
ASME J. Eng. Ind.
0022-0817,
97
, pp.
1190
1193
.
4.
Kundu
,
B.
, and
Das
,
P. K.
, 2005, “
Optimum Profile of Thin Fins with Volumetric Heat Generation—a Unified Approach
,”
ASME Trans. J. Heat Transfer
0022-1481,
127
, pp.
945
948
.
5.
Kern
,
Q. D.
, and
Kraus
,
D. A.
, 1972,
Extended Surface Heat Transfer
,
McGraw–Hill
,
New York
.
6.
Kraus
,
A. D.
, 1988, “
Sixty-Five Years of Extended Surface Technology (1922–1987)
,”
Appl. Mech. Rev.
0003-6900,
41
, pp.
321
364
.
7.
Aziz
,
A.
, 1992, “
Optimum Dimensions of Extended Surfaces Operating in a Convective Environment
,”
Appl. Mech. Rev.
0003-6900,
45
, pp.
155
173
.
8.
Razelos
,
P.
, and
Imre
,
K.
, 1980, “
The Optimum Dimensions of Circular Fins with Variable Thermal Parameters
,”
ASME J. Heat Transfer
0022-1481,
102
, pp.
420
425
.
9.
Brown
,
A.
, 1965, “
Optimum Dimensions of Uniform Annular Fins
,”
Int. J. Heat Mass Transfer
0017-9310,
8
, pp.
655
662
.
10.
Kazeminejad
,
H.
,
Yaghoubi
,
M. A.
, and
Sepehri
,
M.
, 1993, “
Effects of Dehumidification of Air on the Performance of Eccentric Circular Fins
,”
Int. J. Heat Mass Transfer
0017-9310,
207
, pp.
141
146
.
11.
Kundu
,
B.
, and
Das
,
P. K.
, 1999, “
Performance Analysis of Eccentric Annular Fins with a Variable Base Temperature
,”
Numer. Heat Transfer, Part A
1040-7782,
36
, pp.
751
766
.
12.
Sparrow
,
E. M.
, and
Lin
,
S. H.
, 1964, “
Heat Transfer Characteristics of Polygonal and Plate Fins
,”
Int. J. Heat Mass Transfer
0017-9310,
7
, pp.
951
953
.
13.
Shah
,
R. K.
, 1985, “
Compact Heat Exchanger
,”
Handbook Heat Transfer Applications
,
2nd ed.
,
W. M.
Rohsenow
,
J. P.
Hartnett
, and
E. N.
Ganic
, eds.,
McGraw–Hill
,
New York
.
14.
Kuan
,
D. Y.
,
Aris
,
R.
,
Davis
,
H. T.
, 1984, “
Estimation of Fin Efficiencies of Regular Tubes Arrayed in Circumferential Fins
,”
Int. J. Heat Mass Transfer
0017-9310,
27
, pp.
148
151
.
15.
Scarborough
,
J. B.
, 1966,
Numerical Mathematical Analysis
,
Oxford & IBH
,
New Delhi, India
.
16.
Stoecker
,
W. F.
, 1989,
Design of Thermal System
,
3rd ed.
,
McGraw–Hill
,
New York
.
You do not currently have access to this content.