A quasi-one-dimensional ablation analysis for a sharp-nosed, reusable, re-entry vehicle that could possibly be used in an unmanned space program, has been carried out by using an in-house code. The code is based on the boundary immobilization technique and the solution has been obtained using the tri-diagonal matrix algorithm (TDMA). The heat fluxes on the spherical nose cap that are used to determine the ablation rate of a thermal coating applied over the surface of the vehicle are obtained by performing a steady state aero-thermodynamic analysis. The aero-thermodynamic analysis for the viscous, compressible flow under consideration is carried out by using FLUENT 6.2. The computational fluid dynamics (CFD) simulations are performed at three locations on the trajectory that the vehicle follows, on re-entry. These simulations yield the temperature and heat flux distributions along the surface of the vehicle and the latter are given as input to the ablation code. The shell material of the vehicle is assumed to be zirconium boride (ZrB2). The code is validated with benchmark cases and the flow and heat transfer characteristics are also discussed. In brief, the present work presents a methodology for coupling an ablation code with CFD simulations from a commercial code, to study the effect of change of the nose region on the ablation process.

1.
Roy
,
C. J.
,
Payne
,
M. A.
, and
Oberkampf
,
W. L.
, 2003, “
Verification and Validation for Laminar Hypersonic Flowfields, Part 1: Verification
,”
AIAA J.
0001-1452,
41
, pp.
1934
1943
.
2.
Riley
,
C. J.
,
Kleb
,
W. L.
, and
Alter
,
S. J.
, 1999, “
Aeroheating Predictions for X-34 using an Inviscid Boundary Layer Method
,”
J. Spacecr. Rockets
0022-4650,
36
, pp.
206
215
.
3.
Berry
,
S. A.
,
Horvath
,
T. J.
,
Difulvio
,
M.
,
Glass
,
C.
, and
Merski
,
N. R.
, 1999, “
X-34 Experimental Aeroheating at Mach 6 and 10
,”
J. Spacecr. Rockets
0022-4650,
36
, pp.
171
178
.
4.
Henline
,
W. D.
, and
Tauber
,
M. E.
, 1994, “
Trajectory Based Heating Analysis for the European Space Agency ∕ Rosetta Earth Return Vehicle
,”
J. Spacecr. Rockets
0022-4650,
31
, pp.
421
428
.
5.
Wurster
,
K. E.
,
Riley
,
C. J.
, and
Zoby
,
E. V.
, 1999, “
Engineering Aerothermal Analysis for X-34 Thermal Protection System
,”
J. Spacecr. Rockets
0022-4650,
36
, pp.
216
228
.
6.
Joysula
,
E.
, 1999, “
Computational Simulation Improvements of Supersonic High Angle of Attack Missile Flows
,”
J. Spacecr. Rockets
0022-4650,
36
, pp.
59
66
.
7.
Wurster
,
K. E.
, and
Stone
,
H. W.
, 1993, “
Aerodynamic Heating Environment Definition/Thermal Protection System Selection for the HL-20
,”
J. Spacecr. Rockets
0022-4650,
30
, pp.
549
557
.
8.
Murray
,
A. L.
, and
Russell
,
G. W.
, 2002, “
Coupled Aeroheating∕Ablation Analysis for Missile Configurations
,”
J. Spacecr. Rockets
0022-4650,
39
, pp.
501
508
.
9.
Gong
,
L.
, and
Richards
,
W. L.
, 1998, “
Thermal Analysis of a Metallic Wing Glove for a Mach-8 Boundary Layer Experiment
,”
Proceedings at 7th AIAA∕ASME Joint Thermophysics and Heat Transfer Conference
, AIAA-98-2580, Albuquerque, New Mexico, June 15–18.
10.
Landau
,
H. G.
, 1950, “
Heat Conduction in a Melting Solid
,”
Q. Appl. Math.
0033-569X,
8
, pp.
81
94
.
11.
Blackwell
,
B. F.
, and
Hogan
,
R. E.
, 1994, “
One Dimensional Ablation using Landau Transformation and Finite Control Volume Procedure
,”
J. Thermophys. Heat Transfer
0887-8722,
8
, pp.
282
286
.
12.
Savino
,
R.
,
Fumo
,
M. D. S.
,
Paterna
,
D.
, and
Serpico
,
M.
, 2005, “
Aero-thermodynamic Study of UHTC Based Thermal Protection Systems
,”
Aerosp. Sci. Technol.
1270-9638,
9
, pp.
151
160
.
13.
TPSX WEB V2, “
Thermal Protection Systems Expert and Material Properties Database-Unrestricted
,” NASA Ames Research Center ⟨http://tpsx.arc.nasa.gov/cgi-bin/tpsx/unrestrict/V2/tpsx-frame.plhttp://tpsx.arc.nasa.gov/cgi-bin/tpsx/unrestrict/V2/tpsx-frame.pl
14.
Gambit Users Guide
, 2005,
Fluent Inc.
,
Pune, India
.
15.
Fluent Users Guide
, 2005,
Fluent Inc.
,
Pune, India
.
16.
Venkateshan
,
S. P.
, and
Solaiappan
,
O.
, 1990, “
A General Integral Method for One Dimensional Ablation
,”
Waerme- Stoffuebertrag.
0042-9929,
25
, pp.
141
144
.
17.
Tran
,
H. K.
,
Johnson
,
C.
,
Rasky
,
D.
,
Hui
,
F.
,
Hsu
,
M.-T.
,
Chen
,
T.
,
Chen
,
Y. K.
,
Paragas
,
D.
, and
Kobayashi
,
L.
, 1997, “
Phenolic Impregnated Carbon Ablators (PICA) as Thermal Protection System for Discovery Missions
,” NASA TM-110440, NASA, Washington, D.C.
You do not currently have access to this content.