The laser cladding process inherently includes multiscale, highly nonlinear, and non-equilibrium transport phenomena due to nonuniform and rapid heat flow caused by the laser and the material interaction. In this work, a process model of solidification micro-structure evolution for the laser cladding process has been studied by utilizing a phase-field method. The phase-field method has become a widely used computational tool for the modeling of solidification micro-structure evolution with the advantage of avoiding tracking the interface explicitly and satisfying interfacial boundary conditions. In the present work, the numerical solutions of a phase-field model have been analyzed. The linking of the macroscale process and solidification microstructure evolution was examined by considering the relationship of macro- and micro-parameters. The effects of melt undercooling and anisotropy on the solidification micro-structure have also been studied. The predicted results with different undercoolings were compared with the microsolvability theory and a good agreement was found. Different solidification morphologies of different locations in the melt-pool are also investigated. To quantitatively study the effect of heat flux on the dendritic growth, the dendrite tip analysis was carried out. It was observed that the dendrite tip that grows in the same direction with the heat flux shows a much higher velocity than a tip that grows in the opposite direction of the heat flux.

1.
Hoadley
,
A. F. A.
, and
Rappaz
,
M.
, 1992, “
A Thermal Model of Laser Cladding by Powder Injection
,”
Metall. Trans. B
0360-2141,
23B
, pp.
631
643
.
2.
Picasso
,
M.
,
Marsden
,
C.
,
Wagnieres
,
J.-D.
,
Frenk
,
A.
, and
Rappaz
,
M.
, 1994, “
A Simple but Realistic Model for the Laser Cladding process
,”
Metall. Mater. Trans. B
1073-5615,
25B
, pp.
281
291
.
3.
Kar
,
A.
, and
Mazumder
,
J.
, 1989, “
Extended Solid Solution and Nonequilibrium Phase Diagram for Ni-Al Alloy Formed During Laser Cladding
,”
Metall. Trans. A
0360-2133,
20A
, pp.
363
371
.
4.
Zhong
,
M. L.
,
Yao
,
K. F.
,
Liu
,
W. J.
,
Goussain
,
J. C.
,
Mayer
,
C.
, and
Becker
,
A.
, 2001, “
High-Power Laser Cladding Stellite 6+WC With Various Volume Rates
,”
J. Laser Appl.
1042-346X,
13
(
6
), pp.
247
251
.
5.
Choi
,
J.
,
Choudhuri
,
S. K.
, and
Mazumder
,
J.
, 2000, “
Role of Preheating and Specific Energy Input on the Evolution of Microstructure and Wear Properties of Laser Clad Fe-Cr-C-W Alloys
,”
J. Mater. Sci.
0022-2461,
35
(
13
), pp.
3213
3219
.
6.
Sircar
,
S.
,
Chattopadhyay
,
K.
, and
Mazumder
,
J.
, 1992, “
Nonequilibrium Synthesis of NbAl3 and Nb-Al-V Alloys by Laser Cladding. 1. Microstructure Evolution
,”
Metall. Trans. A
0360-2133,
23
(
9
), pp.
2419
2429
.
7.
Weinan
,
E.
,
Engquist
,
B.
, and
Huang
,
Z.
, 2003, “
Heterogeneous Multi-Scale Method—A general Methodology for Multi-Scale Modeling
,”
Phys. Rev. B
0163-1829,
67
(
9
), pp.
092101
.
8.
Weinan
,
E.
, and
Huang
,
Z.
, 2001, “
Matching Conditions in Atomistic-Continuum Modeling of Materials
,”
Phys. Rev. Lett.
0031-9007,
87
(
13
), pp.
135501
.
9.
Boettinger
,
W. J.
,
Warren
,
J. A.
,
Beckermann
,
C.
, and
Karma
,
A.
, 2002, “
Phase-Field Simulation of Solidification
,”
Annu. Rev. Mater. Res.
1531-7331,
32
, pp.
163
194
.
10.
Chen
,
L.-Q.
, 2002, “
Phase-Field Models for Microstructure Evolution
,”
Annu. Rev. Mater. Res.
1531-7331,
32
, pp.
113
140
.
11.
Sekerka
,
R. F.
, 2004, “
Morphology: From Sharp Interface to Phase Field Models
,”
J. Cryst. Growth
0022-0248,
264
, pp.
530
540
.
12.
Beckermann
,
C.
,
Diepers
,
H.-J.
,
Steinbach
,
I.
,
Karma
,
A.
, and
Tong
,
X.
, 1999, “
Modeling Melt Convection in Phase-Field Simulation of Solidification
,”
J. Comput. Phys.
0021-9991,
154
, pp.
468
496
.
13.
Wheeler
,
A. A.
,
Boettinger
,
W. J.
, and
McFadden
,
G. B.
, 1992, “
Phase-Field Model for Isothermal Phase Transitions in Binary Alloys
,”
Phys. Rev. A
1050-2947,
45
, pp.
7424
7440
.
14.
Wheeler
,
A. A.
,
Boettinger
,
W. J.
, and
McFadden
,
G. B.
, 1993, “
Phase-Field Model of Solute Trapping During Solidification
,”
Phys. Rev. E
1063-651X,
47
, pp.
1893
1909
.
15.
Ahmad
,
N. A.
,
Wheeler
,
A. A.
,
Boettinger
,
W. J.
, and
McFadden
,
G. B.
, 1998, “
Solute Trapping and Solute Drag in a Phase-Field Model of Rapid Solidification
,”
Phys. Rev. E
1063-651X,
58
, pp.
3436
3450
.
16.
Kim
,
S. G.
,
Kim
,
W. T.
, and
Suzuki
,
T.
, 1999, “
Phase-Field Model for Binary Alloys
,”
Phys. Rev. E
1063-651X,
60
, pp.
7186
7197
.
17.
Karma
,
A.
, and
Rappel
,
W.-J.
, 1996, “
Phase-Field Method for Computationally Efficient Modelling of Solidification With Arbitrary Interface Kinetics
,”
Phys. Rev. E
1063-651X,
53
, pp.
3017
3020
.
18.
Karma
,
A.
, and
Rappel
,
W.-J.
, 1996, “
Numerical Simulation of Three-Dimensional Dendritic Growth
,”
Phys. Rev. Lett.
0031-9007,
77
, pp.
4050
4053
.
19.
Karma
,
A.
, and
Rappel
,
W.-J.
, 1998, “
Quantitative Phase-Field Modelling of Dendritic Growth in Two and Three Dimensions
,”
Phys. Rev. E
1063-651X,
57
, pp.
4323
4349
.
20.
Ramirez
,
J. C.
,
Beckermann
,
C.
,
Karma
,
A.
, and
Diepers
,
H.-J.
, 2004, “
Phase-Field Modeling of Binary Alloy Solidification With Coupled Heat and Solute Diffusion
,”
Phys. Rev. E
1063-651X,
69
, p.
051607
.
21.
Tong
,
X.
,
Beckermann
,
C.
,
Karma
,
A.
, and
Li
,
Q.
, 2001, “
Phase-Field Simulations of Dendritic Crystal Growth in a Forced Flow
,”
Phys. Rev. E
1063-651X,
63
, pp.
061601
.
22.
Hung
,
C.-F.
, and
Lin
,
J.
, 2004, “
Solidification Model of Laser Cladding With Wire Feeding Technique
,”
J. Laser Appl.
1042-346X,
16
(
3
), pp.
140
146
.
23.
Zhang
,
W.
,
DebRoy
,
T.
,
Palmer
,
T. A.
, and
Elmer
,
J. W.
, 2005, “
Modeling of Ferrite Formation in a Duplex Stainless Steel Weld Considering Non-uniform Starting Microstructure
,”
Acta Mater.
1359-6454,
53
, pp.
4441
4453
.
24.
Choi
,
J.
,
Han
,
L.
, and
Hua
,
Y.
, 2005, “
Modeling and Experiments of Laser Cladding With Droplet Injection
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
978
986
.
25.
Li
,
L. J.
, and
Mazumder
,
J.
, 1985, in
Proceedings of Laser Processing of Materials
,
Metallurgical Society of American Institute of Metallurgical Engineers
,
Warrendale, PA
, pp.
35
50
.
26.
Gedda
,
E.
,
Powel
,
J.
,
Wahlstöm
,
G.
,
Li
,
W.-B.
,
Engström
,
H.
, and
Magnusson
,
C.
, 2002, “
Energy Redistribution During CO2 Laser Cladding
,”
J. Laser Appl.
1042-346X,
14
(
2
), pp.
78
82
.
27.
Nichols
,
B. D.
,
Hirt
,
C. W.
, and
Hotchkiss
,
R. S.
, 1980, “
SOLA-VOF: A Solution Algorithm for Transient Fluid Flow With Multiple Free Boundaries
,” LA-8355,
Los Alamos National Laboratory
.
28.
Hirt
,
C. W.
, and
Nichols
,
B. D.
, 1981, “
Volume of fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
0021-9991,
39
, pp.
201
225
.
29.
Zhao
,
D.
,
Tao
,
J.
, and
Liu
,
B.
, 2003, “
Influence of Phase-Field Parameters on the Dendrite Morphology
,”
Acta Metall. Sin.
0412-1961,
39
(
8
), pp.
813
816
(in Chinese).
You do not currently have access to this content.