This article addresses compound heat transfer enhancement for gaseous natural convection in closed enclosures; that is, the simultaneous use of two passive techniques to obtain heat transfer enhancement, which is greater than that produced by only one technique itself. The compounded heat transfer enhancement comes from two sources: (1) reshaping the bounded space and (2) the adequacy of the gas. The sizing of enclosures is of great interest in the miniaturization of electronic packaging that is severely constrained by space and∕or weight. The gases consist in a subset of binary gas mixtures formed with helium (He) as the primary gas. The secondary gases are nitrogen (N2), oxygen (O2), carbon dioxide (CO2), methane (CH4), and xenon (Xe). The steady-state flow is governed by a system of 2-D coupled mass, momentum, and energy conservation equations, in conjunction with the ideal gas equation of state. The set of partial differential equations is solved using the finite volume method, for a square and a right-angled isosceles triangular enclosure, accounting for the second-order accurate QUICK and SIMPLE schemes. The grid layouts rendered reliable velocities and temperatures for air and the five gas mixtures at high Ra=106, producing errors within 1% were 18,500 and 47,300 elements for the square and triangle enclosures, respectively. In terms of heat transfer enhancement, helium is better than air for the square and the isosceles triangle. It was found that the maximum heat transfer conditions are obtained filling the isosceles triangular enclosure with a He–Xe gas mixture. This gives a good trade-off between maximizing the heat transfer rate while reducing the enclosure space in half; the maximum enhancement of triangle∕square went up from 19% when filled with air into 46% when filled with He–Xe gas mixture at high Ra=106.

1.
Yang
,
K. T.
, 1987, “
Natural Convection in Enclosures
,”
Handbook of Single-Phase Heat Transfer
,
S.
Kakac
et al.
, eds.,
John Wiley
,
New York
, Chap. 13.
2.
Raithby
,
G. D.
, and
Hollands
,
K. G. T.
, 1998, “
Natural Convection
,”
Handbook of Heat Transfer
,
3rd ed.
,
W. M.
Rohesnow
et al.
, eds.,
McGraw-Hill
,
New York
, Chap. 4.
3.
Jaluria
,
Y.
, 2003, “
Natural Convection
,”
Heat Transfer Handbook
,
A.
Bejan
and
A. D.
Kraus
, eds.,
John Wiley
,
New York
, Chap. 7.
4.
Elicer-Cortés
,
J. C.
,
Kim-Son
,
D.
, and
Coutanceau
,
J.
, 1990, “
Transfert de Chaleur Dans un Dèdre a Géométrie Variable
,”
Int. Commun. Heat Mass Transfer
0735-1933,
17
, pp.
759
769
.
5.
Elicer-Cortés
,
J. C.
, and
Kim-Son
,
D.
, 1993, “
Natural Convection in a Dihedral Enclosure
,”
Exp. Heat Transfer
0891-6152,
6
, pp.
205
213
.
6.
Simons
,
R. E.
,
Antonnetti
,
V. W.
,
Nakayawa
,
W.
, and
Oktay
,
S.
, 1997, “
Heat Transfer in Electronic Packages
,”
Microelectronics Packaging Handbook
,
2nd ed.
,
R.
Tummala
et al.
, eds.,
Chapman and Hall
,
New York
, pp.
315
403
.
7.
Bar-Cohen
,
A.
,
Watwe
,
A. A.
, and
Prasher
,
R. S.
, 2003, “
Heat Transfer in Electronic Equipment
,”
Heat Transfer Handbook
,
A.
Bejan
and
A. D.
Kraus
, eds.,
John Wiley
,
New York
, Chap. 13.
8.
Misumi
,
T.
, and
Kitamura
,
K.
, 1993, “
Heat Transfer Enhancement of Natural Convection and Development of a High-Performance Heat Transfer Plate
,”
JSME Int. J.
0913-185X,
36
, pp.
143
152
.
9.
Bhavnani
,
S. H.
, and
Bergles
,
A. E.
, 1990, “
Effect of Surface Geometry and Orientation on Laminar Natural Convection Heat Transfer From a Vertical Flat Plate With Transverse Roughness Elements
,”
Int. J. Heat Mass Transfer
0017-9310,
33
, pp.
965
981
.
10.
Hitt
,
D. L.
, and
Campo
,
A.
, 2004, “
Influence of Transverse Fins Attached to the Heated Wall of a Rayleigh‐Benard Cavity
,”
Proc. ASME IMECE Conference
, Vol. 1,
Anaheim CA
.
11.
Campo
,
A.
, and
Landon
,
M. D.
, 2004, “
Design Optimization of an Air-Filled Cavity: Control of the Constrained Maximum Temperature at the Directly Heated Vertical Wall
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
14
, pp.
718
733
.
12.
Campo
,
A.
, and
Ridouane
,
E. H.
, 2005, “
Enhancement of Natural Convection Transport in Slender Right-Angled Triangular Cavities by Way of Molding the Upper Insulated Wall
,”
J. Enhanced Heat Transfer
1065-5131,
12
, pp.
327
341
.
13.
Bergles
,
A. E.
, 1999, “
Techniques to Enhance Heat Transfer
,”
Handbook of Heat Transfer
,
W. M.
Rosehnow
et al.
, eds.,
McGraw-Hill
,
New York
, Chap. 11.
14.
Manglik
,
R. M.
, 2003, “
Heat Transfer Enhancement
,”
Heat Transfer Handbook
,
A.
Bejan
and
A. D.
Kraus
, eds.,
John Wiley
,
New York
, Chap. 14.
15.
Siegel
,
R.
, and
Howell
,
J. R.
, 1992,
Thermal Radiation Heat Transfer
,
3rd ed.
,
Hemisphere
,
Washington, DC
.
16.
Weaver
,
J. A.
, and
Viskanta
,
R.
, 1991, “
Natural Convection Due to Horizontal Temperature and Concentration Gradients—2. Species Interdiffusion, Soret and Dufour Effects
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
3121
3133
.
17.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere, Taylor & Francis Group
,
New York
.
18.
De Vahl Davis
,
G.
, 1983, “
Natural Convection of Air in a Square Cavity: A Benchmark Numerical Solution
,”
Int. J. Numer. Methods Fluids
0271-2091,
11
, pp.
249
264
.
19.
Flack
,
R. D.
, 1980, “
The Experimental Measurement of Natural Convection Heat Transfer in Triangular Enclosures Heated or Cooled From Below
,”
ASME J. Heat Transfer
0022-1481,
102
, pp.
770
772
.
20.
NIST Chemistry Workbook
,
NIST
, Washington, DC, available at http://webbook.nist.gov∕chemistryhttp://webbook.nist.gov∕chemistry
21.
Poling
,
B. E.
,
Prausnitz
,
J. M.
, and
O’Connell
,
J. P.
, 2001,
The Properties of Gases and Liquids
,
5th ed.
,
McGraw-Hill
,
New York
, pp.
A.5
A.19
.
22.
Hirschfelder
,
J. O.
,
Curtis
,
C. F.
, and
Bird
,
B. R.
, 1964,
Molecular Theory of Gases and Liquids
,
John Wiley
,
New York
.
23.
Bzowski
,
J.
,
Kestin
,
J.
,
Mason
,
E. A.
, and
Uribe
,
F. J.
, 1990, “
Equilibrium and Transport Properties of Gas Mixtures at Low Density: Eleven Polyatomic Gases and Five Noble Gases
,”
J. Phys. Chem. Ref. Data
0047-2689,
19
, pp.
1179
1185
.
24.
Schreiber
,
M.
,
Vesovic
,
V.
, and
Wakeham
,
W. A.
, 1997, “
Thermal Conductivity of Atom-Molecule Dilute Gas Mixtures
,”
High Temp. - High Press.
0018-1544,
29
, pp.
653
660
.
25.
Dymond
,
J. H.
, and
Smith
,
E. B.
, 1980,
The Virial Coefficients of Pure Gases and Mixtures: A Critical Compilation
,
Oxford University Press
,
London
.
This content is only available via PDF.
You do not currently have access to this content.