The multiscale full-spectrum k-distribution (MSFSK) method has become a promising method for radiative heat transfer in inhomogeneous media. In this paper a new scheme is proposed to extend the MSFSK’s ability in dealing with boundary wall emission by distributing this emission across the different gas scales. This scheme pursues the overlap concept of the MSFSK method and requires no changes in the original MSFSK formulation. A boundary emission distribution function is introduced and two approaches of evaluating the function are outlined. The first approach involves line-by-line integration of the spectral absorption coefficients and is, therefore, impractical. The second approach employs a narrow-band k-distribution database to calculate all parameters as in the original narrow-banded based MSFSK formulation and is, therefore, efficient. This distribution scheme of wall emission is evaluated and the two approaches are compared by conducting sample calculations for radiative heat transfer in strongly inhomogeneous media using both the MSFSK method and the line-by-line method.

1.
Lacis
,
A. A.
, and
Oinas
,
V.
, 1991, “
A Description of the Correlated-k Distribution Method for Modeling Nongray Gaseous Absorption, Thermal Emission, and Multiple Scattering in Vertically Inhomogeneous Atmospheres
,”
J. Geophys. Res.
0148-0227,
96
(
D5
), pp.
9027
9063
.
2.
Goody
,
R. M.
, and
Yung
,
Y. L.
, 1989,
Atmospheric Radiation—Theoretical Basis
, 2nd ed.,
Oxford University Press
, New York.
3.
Modest
,
M. F.
, and
Zhang
,
H.
, 2002, “
The Full-Spectrum Correlated-k Distribution for Thermal Radiation From Molecular Gas-Particulate Mixtures
,”
ASME J. Heat Transfer
0022-1481,
124
(
1
), pp.
30
38
.
4.
Goody
,
R. M.
,
West
,
R.
,
Chen
,
L.
, and
Crisp
,
D.
, 1989, “
The Correlated k Method for Radiation Calculations in Nonhomogeneous Atmospheres
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
42
, pp.
539
550
.
5.
Fu
,
Q.
, and
Liou
,
K. N.
, 1992, “
On the Correlated k-Distribution Method for Radiative Transfer in Nonhomogeneous Atmospheres
,”
J. Atmos. Sci.
0022-4928,
49
(
22
), pp.
2139
2156
.
6.
Rivière
,
P.
,
Soufiani
,
A.
, and
Taine
,
J.
, 1992, “
Correlated-k and Fictitious Gas Methods for H2O near 2.7μm
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
48
, pp.
187
203
.
7.
Rivière
,
P.
,
Scutaru
,
D.
,
Soufiani
,
A.
, and
Taine
,
J.
, 1994, “
A New c−k Data Base Suitable from 300 to 2500K for Spectrally Correlated Radiative Transfer in CO2‐H2O Transparent Gas Mixtures
,” in Tenth International Heat Transfer Conference,
Taylor & Francis
, London, pp.
129
134
.
8.
Rivière
,
P.
,
Soufiani
,
A.
, and
Taine
,
J.
, 1995, “
Correlated-k and Fictitious Gas Model for H2O Infrared Radiation in the Voigt Regime
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
53
, pp.
335
346
.
9.
Zhang
,
H.
, and
Modest
,
M. F.
, 2003, “
Scalable Multi-Group Full-Spectrum Correlated-k Distributions for Radiative Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
125
(
3
), pp.
454
461
.
10.
Zhang
,
H.
, and
Modest
,
M. F.
, 2002, “
A Multi-Scale Full-Spectrum Correlated-k Distribution for Radiative Heat Transfer in Inhomogeneous Gas Mixtures
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
73
(
2-5
), pp.
349
360
.
11.
Wang
,
L.
, and
Modest
,
M. F.
, 2005, “
Narrow-Band Based Multi-Scale Full-Spectrum k-Distribution Method for Radiative Transfer in Inhomogeneous Gas Mixtures
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
740
748
.
12.
Denison
,
M. K.
, and
Webb
,
B. W.
, 1993, “
A Spectral Line Based Weighted-Sum-of-Gray-Gases Model for Arbitrary RTE Solver
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
1004
1012
.
13.
Denison
,
M. K.
, and
Webb
,
B. W.
, 1994, “
k-Distributions and Weighted-Sum-of-Gray Gases: A Hybrid Model
,” In Tenth International Heat Transfer Conference,
Taylor & Francis
, London, pp.
19
24
.
14.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
, 2nd ed.,
Academic
, New York.
15.
Modest
,
M. F.
, 2003, “
Narrow-band and Full-Spectrum k-Distributions for Radiative Heat Transfer—Correlated-k vs. Scaling Approximation
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
76
(
1
), pp.
69
83
.
16.
Wang
,
A.
, and
Modest
,
M. F.
, 2005, “
High-Accuracy, Compact Database of Narrow-Band k-Distributions for Water Vapor and Carbon Dioxide
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
93
, pp.
245
261
.
17.
Rothman
,
L. S.
,
Camy-Peyret
,
C.
,
Flaud
,
J.-M.
,
Gamache
,
R. R.
,
Goldman
,
A.
,
Goorvitch
,
D.
,
Hawkins
,
R. L.
,
Schroeder
,
J.
,
Selby
,
J. E. A.
, and
Wattson
,
R. B.
, 2000, “
HITEMP, the High-Temperature Molecular Spectroscopic Database
,” available through http://www.hitran.comhttp://www.hitran.com.
18.
Tashkun
,
S. A.
,
Perevalov
,
V. I.
,
Bykov
,
A. D.
,
Lavrentieva
,
N. N.
, and
Teffo
,
J.-L.
, 2002, “
Carbon Dioxide Spectroscopic databank (CDSD)
,” available from ftp://ftp.iao.ru/pub/CDSD-1000ftp://ftp.iao.ru/pub/CDSD-1000.
You do not currently have access to this content.