Despite the significant amount of research on carbon nanotubes, the thermal conductivity of individual single-wall carbon nanotubes has not been well established. To date only a few groups have reported experimental data for these molecules. Existing molecular dynamics simulation results range from several hundred to 6600 W∕m K and existing theoretical predictions range from several dozens to 9500 W∕m K. To clarify the several-order-of-magnitude discrepancy in the literature, this paper utilizes molecular dynamics simulation to systematically examine the thermal conductivity of several individual (10, 10) single-wall carbon nanotubes as a function of length, temperature, boundary conditions and molecular dynamics simulation methodology. Nanotube lengths ranging from 5 nm to 40 nm are investigated. The results indicate that thermal conductivity increases with nanotube length, varying from about 10 W∕m to 375 W∕m K depending on the various simulation conditions. Phonon decay times on the order of hundreds of fs are computed. These times increase linearly with length, indicating ballistic transport in the nanotubes. A simple estimate of speed of sound, which does not require involved calculation of dispersion relations, is presented based on the heat current autocorrelation decay. Agreement with the majority of theoretical/computational literature thermal conductivity data is achieved for the nanotube lengths treated here. Discrepancies in thermal conductivity magnitude with experimental data are primarily attributed to length effects, although simulation methodology, stress, and intermolecular potential may also play a role. Quantum correction of the calculated results reveals thermal conductivity temperature dependence in qualitative agreement with experimental data.

1.
Hone
,
J.
,
Whitney
,
M.
,
Piskotti
,
C.
, and
Zettl
,
A.
, 1999, “
Thermal Conductivity of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
59
(
4
), pp.
R2514
R2516
.
2.
Kim
,
P.
,
Shi
,
L.
,
Majumdar
,
A.
, and
McEuen
,
P. L.
, 2001, “
Thermal Transport Measurements of Individual Multiwalled Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
87
(
21
), p.
215502
.
3.
Fujii
,
M.
,
Zhang
,
X.
,
Xie
,
H.
,
Ago
,
H.
,
Takahashi
,
K.
, and
Ikuta
,
T.
, 2005, “
Measuring the Thermal Conductivity of a Single Carbon Nanotube
,”
Phys. Rev. Lett.
0031-9007,
95
, p.
065502
.
4.
Choi
,
T.-Y.
,
Poulikakos
,
D.
,
Tharian
,
J.
, and
Sennhauser
,
U.
, 2006, “
Measurement of the Thermal Conductivity of Individual Carbon Nanotubes by the Four-Point Three-ω Method
,”
Nano Lett.
1530-6984,
6
(
8
), pp.
1589
1593
.
5.
Yu
,
C. H.
,
Shi
,
L.
,
Yao
,
Z.
,
Li
,
D. Y.
, and
Majumdar
,
A.
, 2005, “
Thermal Conductance and Thermopower of an Individual Single-Wall Carbon Nanotube
,”
Nano Lett.
1530-6984,
5
(
9
), pp.
1842
1846
.
6.
Pop
,
E.
,
Mann
,
D.
,
Wang
,
Q.
,
Goodson
,
K.
, and
Dai
,
H.
, 2006, “
Thermal Conductance of an Individual Single-Wall Carbon Nanotube Above Room Temperature
,”
Nano Lett.
1530-6984,
6
(
1
), pp.
96
100
.
7.
Haile
,
J. M.
, 1992,
Molecular Dynamics Simulation: Elementary Methods
,
Wiley
,
New York
.
8.
Dresselhaus
,
M. S.
, and
Eklund
,
P. C.
, 2000, “
Phonons in Carbon Nanotubes
,”
Adv. Phys.
0001-8732,
49
(
6
), pp.
705
814
.
9.
Hone
,
J.
, 2001, “
Phonons and Thermal Properties of Carbon Nanotubes
,”
Carbon Nanotubes, Topics in Applied Physics
,
M. S.
Dresselhaus
,
G.
Dresselhaus
, and
P.
Avouris
, eds.,
Springer
,
Berlin
, Germany,
80
, pp.
273
286
.
10.
Yi
,
W.
,
Lu
,
L.
,
Zhang
,
D.-L.
,
Pan
,
Z. W.
, and
Xie
,
S. S.
, 1999, “
Linear Specific Heat of Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
59
(
14
), pp.
R9015
R9018
.
11.
Hoover
,
W. G.
, and
Ashurst
,
W. T.
, 1975, “
Nonequilibrium Molecular Dynamics
,” in
Theoretical Chemistry: Advances and Perspectives
,
H.
Eyring
and
D.
Henderson
, eds.,
Academic
,
New York
,
1
, pp.
1
51
.
12.
Frenkel
,
D.
, and
Smit
,
B.
, 2002,
Understanding Molecular Simulation: From Algorithms to Applications
,
2nd ed.
,
Academic
,
San Diego
, Chap. 3.
13.
Hansen
,
J.-P.
, and
McDonald
,
I. R.
, 1986,
Theory of Simple Liquids
,
2nd ed.
,
Academic
,
London
, Chap. 5.
14.
Irving
,
J. H.
, and
Kirkwood
,
J. G.
, 1950, “
The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics
,”
J. Chem. Phys.
0021-9606,
18
(
6
), pp.
817
829
.
15.
Evans
,
D. J.
, 1982, “
Homogeneous NEMD Algorithm for Thermal Conductivity—Application of Non-Canonical Linear Response Theory
,”
Phys. Lett.
0375-9601,
91A
(
9
), pp.
457
460
.
16.
Berber
,
S.
,
Kwon
,
Y. K.
, and
Tomanek
,
D.
, 2000, “
Unusually High Thermal Conductivity of Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
84
, pp.
4613
4616
.
17.
Osman
,
M. A.
, and
Srivastava
,
D.
, 2001, “
Temperature Dependence of the Thermal Conductivity of Single-Wall Carbon Nanotubes
,”
Nanotechnology
0957-4484,
12
, pp.
21
24
.
18.
Che
,
J.
,
Çagin
,
T.
, and
Goddard
,
W. A.
, III
, 2000, “
Thermal Conductivity of Carbon Nanotubes
,”
Nanotechnology
0957-4484,
11
, pp.
65
69
.
19.
Yao
,
Z.
,
Wang
,
J.
,
Li
,
B.
, and
Liu
,
G.
, 2005, “
Thermal Conduction of Carbon Nanotubes Using Molecular Dynamics
,”
Phys. Rev. B
0163-1829,
71
, p.
085417
.
20.
Padgett
,
C. W.
, and
Brenner
,
D. W.
, 2004, “
Influence of Chemisorption on the Thermal Conductivity of Single-Wall Carbon Nanotubes
,”
Nano Lett.
1530-6984,
4
(
6
), pp.
1051
1053
.
21.
Moreland
,
J. F.
,
Freund
,
J. B.
, and
Chen
,
G.
, 2004, “
The Disparate Thermal Conductivity of Carbon Nanotubes and Diamond Nanowires Studied by Atomistic Simulation
,”
Microscale Thermophys. Eng.
1089-3954,
8
(
1
), pp.
61
69
.
22.
Maruyama
,
S.
, 2003, “
A Molecular Dynamics Simulation of Heat Conduction of a Finite Length Single-Walled Carbon Nanotube
,”
Microscale Thermophys. Eng.
1089-3954,
7
, pp.
41
50
.
23.
Mingo
,
N.
, and
Broido
,
D. A.
, 2005, “
Carbon Nanotube Ballistic Thermal Conductance and Its Limits
,”
Phys. Rev. Lett.
0031-9007,
95
, p.
096105
.
24.
Mingo
,
N.
, and
Broido
,
D. A.
, 2005, “
Length Dependence of Carbon Nanotube Thermal Conductivity and the “Problem of Long Waves”
,”
Nano Lett.
1530-6984,
5
(
7
), pp.
1221
1225
.
25.
Brenner
,
D. W.
, 1990, “
Empirical Potential for Hydrocarbons for use in Simulating the Chemical Vapor Deposition of Diamond Films
,”
Phys. Rev. B
0163-1829,
42
(
15
), pp.
9458
9471
.
26.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
, 2002, “
A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons
,”
J. Phys.: Condens. Matter
0953-8984,
14
, pp.
783
802
.
27.
Abramson
,
A. R.
,
Tien
,
C.-L.
, and
Majumdar
,
A.
, 2002, “
Interface and Strain Effects on the Thermal Conductivity of Heterostructures: A Molecular Dynamics Study
,”
J. Heat Transfer
0022-1481,
124
(
5
), pp.
963
970
.
28.
Shi
,
L.
, 2001, “
Mesoscopic Thermophysical Measurements of Microstructures and Carbon Nanotubes
,” Ph.D. thesis, University of California, Berkeley, CA.
29.
Zhou
,
Y.
,
Cook
,
M.
, and
Karplus
,
M.
, 2000, “
Protein Motions at Zero-Total Angular Momentum: The Importance of Long-Range Correlations
,”
Biophys. J.
0006-3495,
79
, pp.
2902
2908
.
30.
Goldstein
,
H.
, 1980,
Classical Mechanics
,
Addison-Wesley
,
Reading, MA
, Chap. 3.
31.
Hoover
,
W. G.
, 1985, “
Canonical Dynamics: Equilibrium Phase-Space Distribution
,”
Phys. Rev. A
1050-2947,
31
(
3
), pp.
1695
1697
.
32.
Volz
,
S. G.
, and
Chen
,
G.
, 2000, “
Molecular-Dynamics Simulation of Thermal Conductivity of Silicon Crystals
,”
Phys. Rev. B
0163-1829,
61
(
4
), pp.
2651
2656
.
33.
Che
,
J.
,
Çagin
,
T.
,
Deng
,
W.
, and
Goddard
,
W. A.
, III
, 2000, “
Thermal Conductivity of Diamond and Related Materials from Molecular Dynamics Simulations
,”
J. Chem. Phys.
0021-9606,
113
(
6
), pp.
6888
6900
.
34.
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
, 2004, “
Thermal Conductivity Decomposition and Analysis Using Molecular Dynamics Simulations. Part I. Lennard-Jones Argon
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
1783
1798
.
35.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, 1992,
Numerical Recipes in FORTRAN: The Art of Scientific Computing
,
2nd ed.
,
Cambridge University Press
,
Cambridge
, UK, Chap. 2.
36.
Schelling
,
P. K.
, and
Keblinski
,
P.
, 2003, “
Thermal Expansion of Carbon Structures
,”
Phys. Rev. B
0163-1829,
68
, p.
035425
.
37.
Allen
,
M. P.
, and
Tildesley
,
D. J.
, 1987,
Computer Simulation of Liquids
,
Clarendon
,
Oxford
, UK, Chap. 2.
38.
Sokhan
,
V. P.
,
Nicholson
,
D.
, and
Quirke
,
N.
, 2000, “
Phonon Spectra in Model Carbon Nanotubes
,”
J. Chem. Phys.
0021-9606,
113
(
5
), pp.
2007
2015
.
39.
Dickey
,
J. M.
, and
Paskin
,
A.
, 1970, “
Size and Surface Effects on the Phonon Properties of Small Particles
,”
Phys. Rev. B
0556-2805 ,
1
(
2
), pp.
851
857
.
40.
Maiti
,
A.
,
Mahan
,
G. D.
, and
Pantelides
,
S. T.
, 1997, “
Dynamical Simulations of Nonequilibrium Processes-Heat Flow and the Kapitza Resistance Across Grain Boundaries
,”
Solid State Commun.
0038-1098,
102
(
7
), pp.
517
521
.
41.
Kittel
,
C.
, 1996,
Introduction to Solid State Physics
,
7th ed.
,
Wiley
,
New York
.
42.
Chiu
,
H.-Y.
,
Deshpande
,
V. V.
,
Postma
,
H. W. C.
,
Lau
,
C. N.
,
Mikó
,
C.
,
Forró
,
L.
, and
Bockrath
,
M.
, 2005, “
Ballistic Phonon Thermal Transport in Multiwalled Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
95
, p.
226101
.
43.
Tohei
,
T.
,
Kuwabara
,
A.
,
Oba
,
F.
, and
Tanaka
,
I.
, 2006, “
Debye Temperature and Stiffness of Carbon and Boron Nitride Polymorphs from First Principles Calculations
,”
Phys. Rev. B
0163-1829,
73
, p.
064304
.
44.
Gurney
,
R. W.
, 1952, “
Lattice Vibrations in Graphite
,”
Phys. Rev.
0031-899X,
88
(
3
), pp.
465
466
.
45.
Charlier
,
A.
, and
McRae
,
E.
, 1998, “
Lattice Dynamics Study of Zigzag and Armchair Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
57
(
11
), pp.
6689
6696
.
46.
Benoit
,
J. M.
,
Corraze
,
B.
, and
Chauvet
,
O.
, 2002, “
Localization, Coulomb Interactions, and Electrical Heating in Single-Wall Carbon Nanotubes/Polymer Composites
,”
Phys. Rev. B
0163-1829,
65
, p.
241405
(R).
47.
Benedict
,
L. X.
,
Louie
,
S. G.
, and
Cohen
,
M. L.
, 1996, “
Heat Capacity of Carbon Nanotubes
,”
Solid State Commun.
0038-1098,
100
(
3
), pp.
177
180
.
48.
Lee
,
Y. H.
,
Biswas
,
R.
,
Soukoulis
,
C. M.
,
Wang
,
C. Z.
,
Chan
,
C. T.
, and
Ho
,
K. M.
, 1991, “
Molecular-Dynamics Simulation of Thermal Conductivity in Amorphous Silicon
,”
Phys. Rev. B
0163-1829,
43
(
8
), pp.
6573
6580
.
49.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
, 2002, “
Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity
,”
Phys. Rev. B
0163-1829,
65
, p.
144306
.
50.
Chen
,
Y.
,
Li
,
D.
,
Lukes
,
J. R.
,
Ni
,
Z.
, and
Chen
,
M.
, 2005, “
Minimum Superlattice Thermal Conductivity from Molecular Dynamics
,”
Phys. Rev. B
0163-1829,
72
, p.
174302
.
51.
Lukes
,
J. R.
, and
Zhong
,
H.
, 2006, “
Thermal Conductivity of Single Wall Carbon Nanotubes: A Comparison of Molecular Dynamics Simulation Approaches
,”
Proceedings of the Thirteenth International Heat Transfer Conference
,
Sydney
,
Australia
, August 8–13, NAN-29.
You do not currently have access to this content.