This paper presents a systematic experimental method of studying the heat transfer behavior of buoyancy-driven nanofluids. The presence of nanoparticles in buoyancy-driven flows affects the thermophysical properties of the fluid and consequently alters the rate of heat transfer. The focus of this paper is to estimate the range of volume fractions that results in maximum thermal enhancement and the impact of volume fraction on Nusselt number. The test cell for the nanofluid is a two-dimensional rectangular enclosure with differentially heated vertical walls and adiabatic horizontal walls filled with 27 nm Al2O3H2O nanofluid. Simulations were performed to measure the transient and steady-state thermal response of nanofluid to imposed isothermal condition. The volume fraction is varied between 0% and 8%. It is observed that the trend of the temporal and spatial evolution of temperature profile for the nanofluid mimics that of the carrier fluid. Hence, the behaviors of both fluids are similar. Results shows that for small volume fraction, 0.2ϕ2% the presence of the nanoparticles does not impede the free convective heat transfer, rather it augments the rate of heat transfer. However, for large volume fraction ϕ>2%, the convective heat transfer coefficient declines due to reduction in the Rayleigh number caused by increase in kinematic viscosity. Also, an empirical correlation for Nuϕ as a function of ϕ and Ra has been developed, and it is observed that the nanoparticle enhances heat transfer rate even at a small volume fraction.

1.
Lee
,
S.
, and
Choi
,
S. U. S.
, 1996, “
Application of Metallic Nanoparticle Suspensions in Advanced Cooling Systems
,”
ASME Recent Advances in Solids/Structures and Application of Metallic materials
,
PVP (Am. Soc. Mech. Eng.)
0277-027X-Vol.
342
/MD-Vol. 72, pp.
227
234
.
2.
Xue
,
Q.-Z
, 2003, “
Model for Effective Thermal Conductivity of Nanofluids
,”
Phys. Lett. A
0375-9601,
307
, pp.
313
317
.
3.
Wang
,
X.
,
Xu
,
X.
, and
Choi
,
U. S.
, 1999, “
Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
J. Thermophys. Heat Transfer
0887-8722,
13
(
4
), pp.
474
480
.
4.
Amiri
,
A.
, and
Vafai
,
K.
, 1994, “
Analysis of Dispersion Effects and Non-thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow through Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
939
954
.
5.
Amiri
,
A.
, and
Vafai
,
K.
, 1998, “
Transient Analysis of Incompressible Flow Through a Packed Bed
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
4259
4279
.
6.
Bear
,
J.
, 1972,
Dynamics of Fluids in Porous Media
,
Dover
, New York.
7.
Kaviany
,
M.
, 1991,
Principles of Heat Transfer in Porous Media
,
Springer
, New York.
8.
Nield
,
D. A.
, and
Bejan
,
A.
, 1992,
Convection in Porous Media
,
Springer
, New York.
9.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Soyez
,
G.
,
Thompson
,
L. J.
, and
Melfi
,
Di.
, 1999, “
Novel Thermal Properties of NanoStructured Materials
,”
Mater. Sci. Forum
0255-5476,
312–314
, pp.
629
634
.
10.
Xuan
,
Y.
, and
Roetzel
,
W.
, 2000, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
3701
3707
.
11.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivity of Ethylene Glycol-based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
78
(
6
), pp.
718
720
.
12.
Xuan
,
Y.
,
Li
,
Q.
, and
Hu
,
W.
, 2003, “
Aggregation Structure and Thermal Conductivity of Nanofluids
,”
AIChE J.
0001-1541,
49
(
4
), pp.
1038
1043
.
13.
Wang
,
Bu-X.
,
Zhou
,
Le-P.
, and
Peng
,
X.-F.
, 2003, “
A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid With Suspension of Nanoparticles
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2665
2672
.
14.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
, 1993, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion γ‐Al2O3, SiO2, and TiO2 Ultra-Fine Particles)
,”
Netsu Bussei
0913-946X (Japan),
7
(
4
), pp.
227
233
.
15.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 2002, “
Mechanisms of Heat Flow in Suspensions of Nano-sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
855
863
.
16.
Xuan
,
Y.
, and
Li
,
Q.
, 2000, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
0142-727X,
21
, pp.
58
64
.
17.
Pak
,
B. C.
, and
Cho
,
Y. I.
, 1998, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
0891-6152,
11
(
2
), pp.
151
170
.
18.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
, 2003, “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
19
), pp.
3639
3653
.
19.
Ostrach
,
S.
, “
Natural Convection in Enclosures
,” 1972,
Adv. Heat Transfer
0065-2717,
8
, pp.
61
227
.
20.
Gebhart
,
B.
,
Jaluria
,
Y.
,
Mahajan
,
R. L.
, and
Sammakia
,
B.
, 1988,
Buoyancy-Induced Flows and Transport
,
3rd ed.
,
Hemisphere
, Washington, DC, pp.
737
808
.
21.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
, 1990,
Fundamentals of Heat and Mass Transfer
,
3rd ed.
,
Wiley
, New York, pp.
530
567
.
22.
Emery
,
A.
, and
Chu
,
N. C.
, 1965, “
Heat Transfer Across Vertical Layers
,”
J. Heat Transfer
0022-1481,
87
, pp.
110
116
.
23.
Kimura
,
S.
, and
Bejan
,
A.
, 1980, “
Experimental Study of Natural Convection in a Horizontal Cylinder With Different End Temperatures
,”
Int. J. Heat Mass Transfer
0017-9310,
23
, pp.
1117
1126
.
24.
“Agilent 34970A Data Acquisition/Switch Unit User's Guide,” 2003, http://www.agilent.comhttp://www.agilent.com
25.
Nnanna
,
A. G. A.
,
Fistrovich
,
T.
,
Malinski
,
J.
, and
Choi
,
S. U. S.
, 2004, “
Thermal Transport Phenomena in Buoyancy-Driven Nanofluids, Part I
,” ASME Paper No. IMECE 2004-62059.
26.
Maxwell
,
J.
, 1994,
A Treatise on Electricity and Magnetism
,
2nd ed.
,
Oxford University Press
, Cambridge, UK.
27.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
, 1962, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
I & EC Fundamentals
,
I
, pp.
182
191
.
28.
Xue
,
Q.
, and
Xu
,
W.-M.
, 2005, “
A Model of Thermal Conductivity of Nanofluids With Interfacial Shells
,”
Mater. Chem. Phys.
0254-0584,
90
, pp.
298
301
.
29.
Roy
,
G.
,
Nguyen
,
C. T.
, and
Lajoie
,
P.-R.
, 2004, “
Numerical Investigation of Laminar Flow and Heat Transfer in a Radial Flow Cooling System With the Use of Nanofluids
,”
Superlattices Microstruct.
0749-6036,
35
, pp.
497
511
.
30.
Maiga
,
S.
,
Nguyen
,
C. T.
,
Galanis
,
N.
, and
Roy
,
G.
, 2004, “
Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube
,”
Superlattices Microstruct.
0749-6036,
35
, pp.
543
557
.
31.
Brinkman
,
H. C.
, 1952, “
The Viscosity of Concentrated Suspensions and Solution
,”
J. Chem. Phys.
0021-9606,
20
, pp.
571
581
.
32.
Ding
,
Y.
, and
Wen
,
D.
, 2005, “
Particle Migration in a Flow of Nanoparticle Suspensions
,”
Powder Technol.
0032-5910,
149
, pp.
84
92
.
34.
Koo
,
J.
, and
Kleinstreuer
,
C.
, 2005, “
Impact Analysis of Nanoparticle Motion Mechanism on the Thermal Conductivity of Nanofluids
,”
Int. Commun. Heat Mass Transfer
0735-1933, in press.
You do not currently have access to this content.