The combustion behavior of nanometer-scale energetic materials is much different than micron size or larger materials. Burning rates up to 950 m∕s have been reported for a thermite composition of nanosized aluminum and molybdenum trioxide. The energy transport mechanisms in the reactive wave are still uncertain. The relative contribution of radiation has not yet been quantified. To do so analytically requires dependent scattering theory, which has not yet been fully developed. Radiative properties for nanoaluminum and nanomolybdenum-trioxide were obtained experimentally by comparing light scattering measurements on a one-dimensional slab of powder with multiple-scattering simulations using Monte Carlo and discrete ordinate methods. The equivalent isotropic-scattering extinction coefficient for close-packed molybdenum trioxide (MoO3) nanopowder was found to be 5900±450cm1; the equivalent isotropic-scattering albedo was 0.97±0.035. Aluminum (Al), which proved to be more difficult to work with, had an albedo of 0.35 and 0.38 from two tests. The radiative conductivity based on the MoO3 results is two orders of magnitude less than the diffusive thermal conductivity, indicating that radiation is not a dominant heat transfer mode for the reactive wave propagation of nanothermites under optically thick conditions.

1.
Fischer
,
S. H.
and
Brublich
,
M. C.
, 1998, “
Theoretical Energy Release of Thermites, Inter-Metallics and Combustible Metals
,”
24th International Pyrotechnics Seminar
, Monterey, CA.
2.
Aumann
,
C. E.
,
Skofronick
,
G. L.
,
Martin
, and
J. A.
, 1995, “
Oxidation Behavior of Aluminum Nanopowders
,”
J. Vac. Sci. Technol. B
0734-211X,
13
(
3
), pp.
1178
1183
.
3.
Ivanov
,
G. V.
,
Surcov
,
V. G.
, and
Viktroenco
,
A. M.
, 1979, “
Anomalous Dependence of the Combustion Rate of Thermite Mixtures on the Pressure
,”
Combust., Explos. Shock Waves
0010-5082,
15
, pp.
266
268
.
4.
Son
,
S. F.
, 2003, “
Performance and Characterization of Nanoenergetic Materials at Los Alamos
,”
Materials Research Society Symposium Proceedings
, December 1–4, 2003,
Boston, MA
, Vol.
800
, pp.
161
172
.
5.
Yang
,
Y.
,
Wang
,
S.
,
Sun
,
Z.
, and
Dlott
,
D.
, 2005, “
Near-Infrared and Visible Absorption Spectroscopy of Nanoenergetic Materials Containing Aluminum and Boron
,”
Propellants, Explos., Pyrotech.
0721-3115,
30
(
3
), pp.
171
177
.
6.
Brewster
,
M. Q.
, 1992,
Thermal Radiative Transfer and Properties
,
Wiley
,
New York
.
7.
Brewster
,
M. Q.
, 2004, “
Volume Scattering of Radiation in Packed Beds of Large, Opaque Spheres
,”
J. Heat Transfer
0022-1481,
126
, pp.
1048
1050
.
8.
Duke Scientific
, 2004, “
Research and Test Particles
,” Duke Scientific Corporation Bulletin—91N, June 15, 2004.
9.
Duke Scientific
, 1996, “
Index of Refraction
,” Duke Scientific Corporation Technical Note—007B, December 1, 1996.
10.
Ma
,
X.
,
Lu
,
J. Q.
,
Brock
,
R. S.
,
Jacobs
,
K. M.
,
Yang
,
P.
, and
Hu
,
X.-H.
, 2003, “
Determination of Complex Refractive Index of Polystyrene Microspheres from 370to1610nm
,”
Phys. Med. Biol.
0031-9155,
48
, pp.
4165
4172
.
11.
Kwok
,
Q. S. M.
,
Fouchard
,
R. C.
,
Turcotte
,
A. M.
,
Lightfoot
,
P. D.
,
Bowes
,
R.
, and
Jones
,
D. E. G.
, 2002, “
Characterization of Aluminum Nanopowder Compositions
,”
Propellants, Explos., Pyrotech.
0721-3115,
27
, pp.
229
240
.
12.
Pranda
,
P.
,
Prandova
,
K.
, and
Hlavacek
,
V.
, 2000, “
Particle Size and Reactivity of Aluminum Powders
,”
Combust. Sci. Technol.
0010-2202,
156
, pp.
81
96
.
13.
Jones
,
D. E. G.
,
Brousseau
,
P.
,
Fouchard
,
R. C.
,
Turcotte
,
A. M.
, and
Kwok
,
Q. S. M.
, 2000, “
Thermal Characterization of Passivated Nanometer Size Aluminum Powders
,”
J. Therm Anal. Calorim.
1418-2874,
61
, pp.
805
818
.
14.
Son
,
S. F.
,
Busse
,
J. R.
,
Asay
,
B. W.
,
Peterson
,
P. D.
,
Mang
,
J. T.
,
Bockmon
,
B.
, and
Pantoya
,
M. L.
, 2002, “
Propagation Studies of Metastable Intermolecular Composites (MIC)
,”
in Proceedings of the International Pyrotechnics Society, The Twenty-Ninth International Pyrotechnics Seminar
,
Colorado
, July 14–19, 2002.
15.
Bohren
,
C. F.
, and
Huffman
,
D. R.
, 1983,
Absorption and Scattering of Light by Small Particles
,
Wiley
New York
.
16.
Khawaja
,
E. E.
,
Durrani
,
S. M. A
, and
Daous
,
M. A.
, 1997, “
Optical Properties of Thin Films of WO3, MoO3 and Mixed Wxides WO3∕MoO3
,”
J. Phys. Condens. Matter
0953-8984,
9
, pp.
9381
9392
.
17.
Abdellaoui
,
A.
,
Leveque
,
G.
,
Donnadieu
,
A.
,
Bath
,
A.
, and
Bouchikhi
,
B.
, 1997, “
Iteratively Derived Optical Constants of MoO3 Polycrystalline Thin Films Prepared by CVD
,”
Thin Solid Films
0040-6090,
304
, pp.
39
44
.
18.
Reyes-Betanzo
,
C.
,
Herrera-Perez
,
J. L.
,
Cocoletzi
,
G. H.
, and
Zelaya-Angel
,
O.
, 2000, “
Refractive Index of Colored Films of Molybdenum Trioxide
,”
J. Appl. Phys.
0021-8979,
88
(
1
), pp.
223
226
.
19.
Tien
,
C. L.
, and
Drolen
,
B. L.
, 1987, “
Thermal Radiation in Particulate Media with Dependent and Independent Scattering
,”
Annu. Rev. Numer. Fluid Mech. Heat Transfer
0892-6883,
1
, pp.
1
32
.
20.
Kumar
,
S.
, and
Tien
,
C. L.
, 1990, “
Dependent Absorption and Extinction of Radiation by Small Particles
,”
J. Heat Transfer
0022-1481,
112
, pp.
178
185
.
21.
Drolen
,
B. L.
, and
Tien
,
C. L.
, 1987, “
Independent and Dependent Scattering in Packed-Sphere Systems
,”
J. Thermophys. Heat Transfer
0887-8722,
1
(
1
), pp.
63
68
.
22.
Graaff
,
R.
,
Aarnoudse
,
J. G.
,
de Mul
,
F. F. M.
, and
Jentink
,
H. W.
, 1989, “
Light Propagation Parameters for Anisotropically Scattering Media Based on the Rigorous Solution of the Transport Equation
,”
Appl. Opt.
0003-6935,
28
(
12
), pp.
2273
2279
.
23.
Brewster
,
M. Q
, and
Yamada
,
Y.
, 1995, “
Optical Properties of Thick Turbid Media from Picosecond Time-Resolved Light Scattering Measurments
,”
Int. J. Heat Mass Transfer
0017-9310
38
(
14
), pp.
2569
2581
.
24.
Chu
,
C.-M.
, and
Churchill
,
S. W.
, 1955, “
Representation of the Angular Distribution of Radiation Scattered by a Spherical Particle
,”
J. Opt. Soc. Am.
0030-3941,
45
(
11
), pp.
958
962
.
25.
Lee
,
H.
, and
Buckius
,
R. O.
, 1982, “
Scaling Anisotropic Scattering in Radiation Heat Transfer for a Planar Medium
,”
J. Heat Transfer
0022-1481,
104
, pp.
68
75
.
26.
Wilson
,
D. E.
, and
Kim
,
K.
, 2003 “
A Simplified Model for the Combustion of Al∕MoO3 Nanocomposite Thermites
,”
39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference AIAA 2003–4536
, Huntsville, AL, USA, July 20–23, 2003.
27.
Bockmon
,
B. S.
,
Pantoya
,
M. L.
,
Son
,
S. F.
,
Asay
,
B. W.
, and
Mang
,
J. T.
, 2005, “
Combustion Velocities and Propagation Mechanisms of Metastable Interstitial Composites
,”
J. Appl. Phys.
0021-8979,
98
(
6
), pp.
064903
.
You do not currently have access to this content.