In the present work, solidification of a hyper-eutectic ammonium chloride solution in a bottom-cooled cavity (i.e. with stable thermal gradient) is numerically studied. A Rayleigh number based criterion is developed, which determines the conditions favorable for freckles formation. This criterion, when expressed in terms of physical properties and process parameters, yields the condition for plume formation as a function of concentration, liquid fraction, permeability, growth rate of a mushy layer, and thermophysical properties. Subsequently, numerical simulations are performed for cases with initial and boundary conditions favoring freckle formation. The effects of parameters, such as cooling rate and initial concentration, on the formation and growth of freckles are investigated. It was found that a high cooling rate produced larger and more defined channels which are retained for a longer durations. Similarly, a lower initial concentration of solute resulted in fewer but more pronounced channels. The number and size of channels are also found to be related to the mushy zone thickness. The trends predicted with regard to the variation of number of channels with time under different process conditions are in accordance with the experimental observations reported in the literature.

1.
Copeley
,
S. M.
,
Giamei
,
A. F.
, and
Hornbecker
,
M. F.
, 1970, “
The Origin of Freckles in Unidirectionally Solidified Castings
,”
Metall. Trans.
0026-086X,
1
, pp.
2193
2204
.
2.
Worster
,
M. G.
, 1997, “
Convection in Mushy Layers
,”
Annu. Rev. Fluid Mech.
0066-4189,
29
, pp.
91
122
.
3.
Chen
,
F.
,
Lu
,
J. W.
, and
Yang
,
T. L.
, 1994, “
Convection Instability in Ammonium Chloride Solution Directionally Solidified From Below
,”
J. Fluid Mech.
0022-1120,
276
, pp.
163
188
.
4.
Chen
,
F.
, 1995, “
Experimental Study of Convection in a Mushy Layer During Directional Solidification
,”
J. Fluid Mech.
0022-1120,
293
, pp.
277
286
.
5.
Solomon
,
T. H.
, and
Hartley
,
R. R.
, 1998, “
Measurements of the Temperature Field of Mushy and Liquid Regions During Solidification of Aqueous Ammonium Chloride
,”
J. Fluid Mech.
0022-1120,
358
, pp.
87
106
.
6.
Nishimura
,
T.
, and
Wakamatsu
,
M.
, 2000, “
Natural Convection Suppression and Crystal Growth During Unidirectional Solidification of a Binary System
,”
Heat Transfer Asian Res.
1099-2871,
29
, pp.
120
131
.
7.
Nishimura
,
T.
,
Sasaki
,
J.
, and
Htoo
,
T. T.
, 2003, “
The Structure of Plumes Generated in the Unidirectional Solidification Process for a Binary System
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4489
4497
.
8.
Sampel
,
A.
, and
Hellawell
,
A.
, 1982, “
The Effect of Mold Precession on Channel and Macro-Segregation in Ammonium Chloride Water Analog Castings
,”
Metall. Trans. B
0360-2141,
13B
, pp.
495
501
.
9.
Sampel
,
A.
, and
Hellawell
,
A.
, 1984, “
The Mechanisms of Formation and Prevention of Channel Segregation During Alloy Solidification
,”
Metall. Trans. A
0360-2133,
15A
, pp.
2163
2173
.
10.
Tan
,
F. L.
,
Tso
,
C. P.
, and
Pek
,
P. K.
, 2003, “
An Experimental Investigation on Freckles Formation During Solidification of Aqueous Ammonium Chloride
,”
Int. Commun. Heat Mass Transfer
0735-1933,
30
(
8
), pp.
1101
1114
.
11.
Tan
,
F. L.
, 2005, “
An Experimental Study on Channels Formation During Solidification of Aqueous Ammonium Chloride
,”
Appl. Therm. Eng.
1359-4311,
25
(
14–15
), pp.
2169
2192
.
12.
Neilson
,
D. G.
, and
Incropera
,
F. P.
, 1993, “
Unidirectional Solidification of a Binary Alloy and the Effects of Induced Fluid Motion
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
1717
1732
.
13.
Felicelli
,
S. D.
,
Heinrich
,
J. C.
, and
Poirier
,
D. R.
, 1991, “
Simulation of Freckles During Vertical Solidification of Binary Alloys
,”
Metall. Trans. B
0360-2141,
22B
, pp.
847
859
.
14.
Neilson
,
D. G.
, and
Incropera
,
F. P.
, 1993, “
Three-Dimensional Considerations of Unidirectional Solidification in a Binary Liquid
,”
Numer. Heat Transfer, Part A
1040-7782,
23
, pp.
1
20
.
15.
Felicelli
,
S. D.
,
Heinrich
,
J. C.
, and
Poirier
,
D. R.
, 1998, “
Three-Dimensional Simulations of Freckles in Binary Alloys
,”
J. Cryst. Growth
0022-0248,
191
, pp.
879
888
.
16.
Schneider
,
M. C.
,
Gu
,
J. P.
,
Beckermann
,
C.
,
Boettinger
,
W. J.
, and
Kattner
,
U. R.
, 1997, “
Modeling of Micro- and Macrosegregation and Freckle Formation in Single-Crystal Nickel-Base Superalloy Directional Solidification
,”
Metall. Mater. Trans. A
1073-5623,
28A
, pp.
1517
1531
.
17.
Sarazin
,
J. R.
, and
Hellawell
,
A.
, 1988, “
Channel Formation in Pb–Sn, Pb–Sb and Pb–Sn–Sb Alloy Ingots and Comparison With the System NH4Cl-H2O
,”
Metall. Trans. A
0360-2133,
19A
, pp.
1861
1871
.
18.
Bergman
,
M. I.
,
Fearn
,
D. R.
,
Bloxhan
,
J.
, and
Shannon
,
M. C.
, 1997, “
Convection and Channel Formation in Solidifying Pb–Sn Alloys
,”
Metall. Mater. Trans. A
1073-5623,
28A
, pp.
859
866
.
19.
Beckermann
,
C.
,
Gu
,
J. P.
, and
Boettinger
,
W. J.
, 2000, “
Development of a Freckle Predictor via Rayleigh Number Method for Single-Crystal Nickel-Base Superalloy
,”
Metall. Mater. Trans. A
1073-5623,
31A
, pp.
2545
2557
.
20.
Sung
,
P. K.
,
Poirier
,
D. R.
, and
Felicelli
,
S. D.
, 2001, “
Simulating the Iinitiation of a Channel During Directional Solidification of a Superalloy
,”
Metall. Mater. Trans. A
1073-5623,
32A
, pp.
202
207
.
21.
Mehrabian
,
R.
,
Keane
,
M.
, and
Flemings
,
M. C.
, 1970, “
Interdendritic Fluid Flow and Macrosegregation: Influence of Gravity
,”
Metall. Trans.
0026-086X,
1
, pp.
1209
1220
.
22.
Heinrich
,
J. C.
, and
Poirier
,
D. R.
, 2004, “
Convection Modeling in Directional Solidification
,”
C. R. Mec.
1631-0721,
332
, pp.
429
445
.
23.
Bennon
,
W. D.
, and
Incropera
,
F. P.
, 1987, “
A Continuum Model for Momentum, Heat, and Species Transport in Binary Solid-Liquid Phase Change Systems—I Model Formulation
,”
Int. J. Heat Mass Transfer
0017-9310,
30
(
16
),
2161
2170
.
24.
Voller
,
V. R.
,
Brent
,
A. D.
, and
Prakash
,
C.
, 1989, “
The Modeling of Heat, Mass and Solute Transport in Solidification Systems
,”
Int. J. Heat Mass Transfer
0017-9310,
32
(
9
), pp.
1719
1731
.
25.
Chakraborty
,
S.
, and
Dutta
,
P.
, 2003, “
Three Dimensional Double-Diffusive Convection and Macrosegregation During Non-Equilibrium Solidification of Binary Mixtures
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
12
),) pp.
2115
2134
.
26.
Kumar
,
P.
,
Chakraborty
,
S.
,
Srinivasan
,
K.
, and
Dutta
,
P.
, 2003, “
Studies on Transport Phenomena During Directional Solidification of a Non-Eutectic Binary Solution Cooled From the Top
,”
Metall. Mater. Trans. B
1073-5615,
34
(
6
), pp.
899
909
.
27.
Kumar
,
P.
,
Chakraborty
,
S.
,
Srinivasan
,
K.
, and
Dutta
,
P.
, 2002, “
Rayleigh-Benard Convection During Solidification of a Binary Alloy Cooled From the Top: Experiments and Numerical Simulation
,”
Metall. Mater. Trans. B
1073-5615,
33
, pp.
605
612
.
28.
Kumar
,
A.
, and
Dutta
,
P.
, 2005, “
Modeling of Transport Phenomena in Continuous Casting of Non-Dendritic Billets
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3674
3688
.
29.
Brent
,
A. D.
,
Voller
,
V. R.
, and
Reid
,
K. J.
, 1988, “
The Enthalpy Porosity Technique for Modeling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal
,”
Numer. Heat Transfer
0149-5720,
13
, pp.
297
318
.
30.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
, Washington, D.C., pp.
113
134
.
31.
Chakraborty
,
S.
, and
Dutta
,
P.
, 2001, “
A Generalized Formulation for Evaluation of Latent Heat Functions in Enthalpy-Based Macroscopic Models for Convection-Diffusion Phase Change Processes
,”
Metall. Mater. Trans. B
1073-5615,
32B
, pp.
562
564
.
32.
Frueh
,
C.
,
Poirier
,
D. R.
, and
Felicelli
,
S. D.
, 2000, “
Effect of Computational Domain Size on the Mathematical Modeling of Transport Processes and Segregation During Directional Solidification
,”
Metall. Mater. Trans. A
1073-5623,
31A
, pp.
3129
3135
.
You do not currently have access to this content.