The role of numerical simulation to drive the catalytic converter development becomes more important as more efficient spark ignition engines after-treatment devices are required. The use of simplified approaches using rather simple correlations for heat and mass transfer in a channel has been widely used to obtain computational simplicity and sufficient accuracy. However, these approaches always require specific experimental tuning so reducing their predictive capabilities. The feasibility of a computational fluid dynamics three-dimensional (3D) model coupled to a surface chemistry solver is evaluated in this paper as a tool to increase model predictivity then allowing the detailed study of the performance of a catalytic converter under widely varying operating conditions. The model is based on FLUENT to solve the steady-state 3D transport of mass, momentum and energy for a gas mixture channel flow, and it is coupled to a powerful surface chemistry tool (CANTERA). Checked with respect to literature available experimental data, this approach has proved its predictive capabilities not requiring an ad hoc tuning of the parameter set. Heat and mass transfer characteristics of channels with different section shapes (sinusoidal, hexagonal, and squared) have then been analyzed. Results mainly indicate that a significant influence of operating temperature can be observed on Nusselt and Sherwood profiles and that traditional correlations, as well as the use of heat/mass transfer analogy, may give remarkable errors (up to 30% along one-third of the whole channel during light-off conditions) in the evaluation of the converter performance. The proposed approach represents an appropriate tool to generate local heat and mass transfer correlations for less accurate, but more comprehensive, 1D models, either directly during the calculation or off-line, to build a proper data base.

1.
Dembski
,
N.
,
Guezennec
,
Y.
, and
Soliman
,
A.
, 2002, “
Analysis and Experimental Refinement of Real-World Driving Cycles
,” SAE Paper No. 2002-01-0069.
2.
Presti
,
M.
, and
Pace
,
L.
, 2005, “
Optimisation Development of Advanced Exhaust Gas Aftertreatment Systems for Automotive Applications
,” SAE Paper No. 2005-01-2157.
3.
Koltsakis
,
G. C.
, and
Stamatelos
,
A. M.
, 1997, “
Catalytic Automotive Exhaust Aftertreatment
,”
Prog. Energy Combust. Sci.
0360-1285,
23
, pp.
1
39
.
4.
Pontikakis
,
G. N.
, 2003, “
Modeling, Reaction Schemes and Kinetic Parameter Estimation in Automotive Catalytic Converters and Diesel Particulate Filters
,” Ph.D. thesis, University of Thessaly.
5.
Hayes
,
R. E.
, and
Kolaczowski
,
S. T.
, 1999, “
A Study of Nusselt and Sherwood Numbers in a Monolith Reactor
,”
Catal. Today
0920-5861,
47
, pp.
295
303
.
6.
Holmgren
,
A.
, and
Andersson
,
B.
, 1998, “
Mass Transfer in Monolith Catalysts-CO Oxidation Experiments and Simulations
,”
Chem. Eng. Sci.
0009-2509,
53
, pp.
2285
2298
.
7.
Bollig
,
M.
,
Liebl
,
J.
,
Zimmer
,
R.
,
Kraum
,
M.
,
Seel
,
O.
,
Siemund
,
S.
,
Brück
,
R.
,
Diringer
,
J.
, and
Maus
,
W.
, 2004, “
Next Generation Catalysts are Turbulent: Development of Support and Coating
,” SAE Paper No. 2004-01-1488.
8.
Zhang
,
L. Z.
, 2005, “
Turbulent Three-Dimensional Air Flow and Heat Transfer in a Cross-Corrugated Triangular Duct
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
1151
1158
.
9.
Burgess
,
N. K.
, and
Ligrani
,
P. M.
, 2005, “
Effects of Dimple Depth on Channel Nusselt Numbers and Friction Factors
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
839
847
.
10.
Egner
,
M. W.
, and
Burmeister
,
L. C.
, 2005, “
Heat Transfer for Laminar Flow in Spiral Ducts of Rectangular Cross Section
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
352
356
.
11.
FLUENT 6.2, User Guide
, 2004,
Fluent, Inc.
, Lebanon, NH.
12.
Goodwin
,
D. G.
, 2003, “
An Open-Source, Extensible Software Suite for CVD Process Simulation, Chemical Vapor Deposition
,”
Proceedings 16th and EUROCVD, 14, ECS, Volume 2003-08
,
M.
Allendorf
,
F.
Maury
, and
F.
Teyssandier
,
ed.
,
The Electrochemical Society
, pp.
155
162
.
13.
Miyairi
,
Y.
,
Aoki
,
T.
,
Hirose
,
S.
,
Makino
,
M.
,
Miwa
,
S.
,
Abe
, and
F.
, 2003, “
Effect of Cell Shape on Transfer of Mass and Pressure Loss
,” SAE Paper No. 2003-01-0659.
14.
Groppi
,
G.
, and
Tronconi
,
E.
, 1997, “
Theoretical Analysis of Mass and Heat Transfer in Monolith Catalysts With Triangular Channels
,”
Chem. Eng. Sci.
0009-2509,
52
, pp.
3521
3526
.
15.
Pontikakis
,
G. N.
,
Konstantas
,
G. N.
, and
Stamatelos
,
A. M.
, 2004, “
Three-Way Catalytic Converter Modelling as a Modern Engineering Design Tool
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
, pp.
906
923
.
16.
Hawthorn
,
R. D.
, 1974, Afterburner Catalysts: “
Effect of Heat and Mass Transfer Between Gas and Catalyst Surface
,”
AIChE Symp. Ser.
0065-8812,
70
, pp.
428
438
.
17.
Matthess
,
N.
,
Schweich
,
D.
,
Martin
,
B.
, and
Castagna
,
F.
, 2001,
“From Light-off Curves to Kinetic Rate Expressions for Three-Way Catalysts
,”
Top. Catal.
1022-5528,
16/17
, pp
119
124
.
18.
Keil
,
F. J.
, 1999, “
Diffusion and Reaction in Porous Networks
,”
Catal. Today
0920-5861,
53
, pp.
245
258
.
19.
Voltz
,
S. E.
,
Morgan
,
C. R.
,
Liederman
,
D.
, and
Jacob
,
S. M.
, 1973, “
Kinetic Study of Carbon Monoxide and Propylene Oxidation on Platinum Catalysts
,”
Ind. Eng. Chem. Prod. Res. Dev.
0196-4321,
12
, pp.
294
301
.
20.
Chatterje
,
D.
,
Deutschmann
,
O.
, and
Warnatz
,
J.
, 2001, “
Detailed Surface Reaction Mechanism in a Three-Way Catalyst
,”
Faraday Discuss.
0301-7249,
119
, pp.
371
384
.
21.
Arrighetti
,
C.
,
Cordiner
,
S.
, and
Mulone
,
V.
, 2005, “
Simulazione Termo-Fluidodinamica 3D di un Canale di Marmitta Catalitica a Tre Vie per MCI a Mezzo di Schemi Chimici Dettagliati
,” 60° Congresso Nazionale ATI.
22.
Granger
,
P.
,
Dujardin
,
C.
,
Paul
,
J.-F.
, and
Leclercq
,
G.
, 2005, “
An Overview of Kinetic and Spectroscopic Investigations on Three-Way Catalysts: Mechanistic Aspects of the CO+NO and CO+N2O Reactions
,”
J. Mol. Catal. A: Chem.
1381-1169,
228
, pp.
241
253
.
23.
Kissel-Osterrieder
,
R.
,
Behrendt
,
F.
,
Warnatz
,
J.
,
Metka
,
U.
,
Volpp
,
H.-R.
, and
Wolfrum
,
J.
, 2000, “
Experimental and Theoretical Investigation of Co Oxidation on Platinum: Bridging the Pressure and Materials Gap
,”
Proc. Combust. Inst.
1540-7489,
28
, pp.
1341
1348
.
24.
Deutschmann
,
O.
, 2001, “
Interactions Between Transport and Chemistry in Catalytic Reactors
,” Habilitation thesis, Ruprecht-Karls-Universität, Heidelberg, Germany.
25.
Braun
,
J.
,
Hauber
,
T.
,
Tobben
,
H.
,
Zacke
,
P.
,
Chatterje
,
D.
, and
Deutschmann
,
O.
, 2000, “
Influence of Physical and Chemical Parameters on the Conversion Rates of a Catalytic Converter: A Numerical Simulation Study
,” SAE Paper No. 2000-01-0211.
26.
Andreassi
,
L.
,
Cordiner
,
S.
, and
Mulone
,
V.
, 2004, “
Cell Shape Influence on Mass Transfer and Backpressure Losses in an Automotive Catalytic Converter
,” SAE Paper No. 2004-01-1837.
27.
Incropera
,
F. P.
, and
De Witt
,
D. P.
, 2001,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
28.
Groppi
,
G.
,
Belloli
,
A.
,
Tronconi
,
E.
, and
Forzatti
,
P.
, 1995, “
A Comparison of Lumped and Distributed Models of Monolith Catalytic Combustors
,”
Chem. Eng. Sci.
0009-2509,
50
, pp.
2705
2715
.
29.
Renksizbulut
,
M.
, and
Niazmand
,
H.
, 2006, “
Laminar Flow and Heat Transfer in the Entrance Region of Trapezoidal Channels With Constant Wall Temperature
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
63
74
.
You do not currently have access to this content.