Modeling full-scale monolithic catalytic converters using state-of-the-art computational fluid dynamics algorithms and techniques encounters a classical multiscale problem: the channels within the monolith have length scales that are 1–2 mm, while the converter itself has a length scale that is 5–10 cm. This necessitates very fine grids to resolve all the length scales, resulting in few million computational cells. When complex heterogeneous chemistry is included, the computational problem becomes all but intractable unless massively parallel computation is employed. Two approaches to address this difficulty are reviewed, and their effectiveness demonstrated for the computation of full-scale catalytic converters with complex chemistry. The first approach is one where only the larger scales are resolved by a grid, while the physics at the smallest scale (channel scale) are modeled using subgrid scale models whose development entails detailed flux balances at the “imaginary” fluid–solid interfaces within each computational cell. The second approach makes use of the in situ adaptive tabulation algorithm, after significant reformulation of the underlying mathematics, to accelerate computation of the surface reaction boundary conditions. Preliminary results shown here for a catalytic combustion application involving 19 species and 24 reactions indicate that both methods have the potential of improving computational efficiency by several orders of magnitude.

1.
Raja
,
L. L.
,
Kee
,
R. J.
,
Deutschmann
,
O.
,
Warnatz
,
J.
, and
Schmidt
,
L. D.
, 2000, “
A Critical Evaluation of Navier-Stokes, Boundary-Layer, and Plug-Flow Models of the Flow and Chemistry in a Catalytic-Combustion Monolith
,”
Catal. Today
0920-5861,
59
, pp.
47
60
.
2.
Tischer
,
S.
,
Correa
,
C.
, and
Deutschmann
,
O.
, 2001, “
Transient Three-Dimensional Simulations of a Catalytic Combustion Monolith Using Detailed Models for Heterogeneous and Homogeneous Reactions and Transport Phenomena
,”
Catal. Today
0920-5861,
69
, pp.
57
62
.
3.
Pope
,
S. B.
, 1997, “
Computationally Efficient Implementation of Combustion Chemistry Using In Situ Adaptive Tabulation
,”
Combust. Theory Modell.
1364-7830,
1
, pp.
41
63
.
4.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
, 2001,
Transport Phenomena
, 2nd ed.,
Wiley
,
New York
.
5.
Kuo
,
K. K.
, 1986,
Principles of Combustion
,
Wiley
,
New York
.
6.
Whitaker
,
S.
, 1983,
Fundamental Principles of Heat Transfer
,
Krieger
,
Melbourne, FL
.
7.
Kumar
,
A.
, and
Mazumder
,
S.
, 2007, “
Assessment of the Dilute Approximation for the Prediction of Combined Heat and Mass Transfer Rates in Multi-Component Systems
,” Heat and Mass Transfer, published online, doi: 10 1007/s00231-006-0223-6
8.
Wangard
,
W.
,
Dandy
,
D. S.
, and
Miller
,
B. J.
, 2001, “
A Numerically Stable Method for Integration of the Multi-Component Species Diffusion Equations
,”
J. Comput. Phys.
0021-9991,
174
, pp.
460
472
.
9.
Mazumder
,
S.
, 2006, “
Critical Assessment of the Stability and Convergence of the Equations of Multi-Component Diffusion
,”
J. Comput. Phys.
0021-9991,
212
(
2
), pp.
383
392
.
10.
Hirschfelder
,
J. O.
,
Curtiss
,
C. F.
, and
Bird
,
R. B.
, 1954,
Molecular Theory of Gases and Liquids
,
Wiley
,
New York
.
11.
Sutton
,
K.
, and
Gnoffo
,
P. A.
, 1998, “
Multicomponent Diffusion With Application to Computational Aerothermodynamics
,” AIAA paper No. 98-2575.
12.
Coltrin
,
M.
,
Kee
,
R.
, and
Rupley
,
F.
, 1991, “
Surface Chemkin: A General Formalism and Software for Analyzing Heterogeneous Chemical Kinetics at Gas-Solid Interfaces
,”
Int. J. Chem. Kinet.
0538-8066,
23
, pp.
1111
1128
.
13.
Mazumder
,
S.
, and
Lowry
,
S. A.
, 2001, “
The Treatment of Reacting Surfaces for Finite-Volume Schemes on Unstructured Meshes
,”
J. Comput. Phys.
0021-9991,
173
(
2
), pp.
512
526
.
14.
Kaviany
,
M.
, 1991,
Principles of Heat Transfer in Porous Media
,
Springer
,
New York
.
15.
Whitaker
,
S.
, 1996, “
The Forchheimer Equation: A Theoretical Development
,”
Transp. Porous Media
0169-3913,
25
, pp.
27
61
.
16.
Mazumder
,
S.
, and
Sengupta
,
D.
, 2002, “
Subgrid Scale Modeling of Heterogeneous Chemical Reactions and Transport in Full-Scale Catalytic Converters
,”
Combust. Flame
0010-2180,
131
(
1–2
), pp.
85
97
.
17.
Chatterjee
,
D.
,
Deutschmann
,
O.
, and
Warnatz
,
J.
, 2001, “
Detailed Surface Reaction Mechanism in a Three-Way Catalyst
,”
Faraday Discuss.
0301-7249,
119
, pp.
371
384
.
18.
Holland
,
J.
, 1975,
Adaptation in Natural and Artificial Systems
,
University of Michigan Press
,
Ann Arbor, MI
.
19.
Homma
,
R.
, and
Chen
,
J.
, 2001, “
Combustion Process Optimization by Genetic Algorithms: Reduction of NO2 Emission via Optimal Post-Flame Process
,”
Proc. Combust. Inst.
1540-7489,
28
, pp.
2483
2489
.
20.
Elliott
,
L.
,
Ingham
,
D.
,
Kyne
,
A.
,
Mera
,
N.
,
Pourkashanian
,
M.
, and
Wilson
,
C.
, 2003, “
Incorporation of Physical Bounds on Rate Parameters for Reaction Mechanism Optimisation Using Genetic Algorithms
,”
Combust. Sci. Technol.
0010-2202,
175
(
4
), pp.
619
648
.
21.
Elliott
,
L.
,
Ingham
,
D.
,
Kyne
,
A.
,
Mera
,
N.
,
Pourkashanian
,
M.
, and
Wilson
,
C.
, 2004, “
Genetic Algorithms for Optimisation of Chemical Kinetics Reaction Mechanisms
,”
Prog. Energy Combust. Sci.
0360-1285,
30
(
3
), pp.
297
328
.
22.
Takahashi
,
T.
,
Funatsu
,
K.
, and
Ema
,
Y.
, 2005, “
Automatic Modeling of Reaction Systems Using Genetic Algorithms and its Application to Chemical Vapor Deposition Processes: Advanced Utilizations of Simulators for Chemical Systems
,”
Meas. Sci. Technol.
0957-0233,
16
, pp.
278
284
.
23.
Majumdar
,
S.
, and
Mitra
,
K.
, 2004, “
Modeling of Reaction Network and its Optimization by Genetic Algorithms
,”
Chem. Eng. J.
0300-9467,
100
, pp.
109
118
.
24.
Chen
,
J.
,
Blasco
,
J.
,
Fueyo
,
N.
, and
Dopazo
,
C.
, 2001, “
An Economical Strategy for Storage of Chemical Kinetics: Fitting In Situ Adaptive Tabulation With Artificial Neural Networks
,”
Proc. Combust. Inst.
1540-7489,
28
, pp.
115
121
.
25.
Kapoor
,
R.
, and
Menon
,
S.
, 2002, “
Computational Issues for Simulating Finite-rate Kinetics in LES
,”
Proceedings of the ASME Turbo-Expo, IGTI
, 3–6 June, Amsterdam, Netherlands, Vol.
1
, pp.
781
789
.
26.
Li
,
G.
,
Rosenthal
,
C.
, and
Rabitz
,
H.
, 2001, “
High Dimensional Model Representations
,”
TASK Q.
1428-6394,
105
(
33
), pp.
7765
7777
.
27.
Shorter
,
J.
,
Ip
,
P.
, and
Rabitz
,
H.
, 1999, “
An Efficient Chemical Kinetics Solver Using High Dimensional Model Representation
,”
TASK Q.
1428-6394,
103
, pp.
7192
7198
.
28.
Wang
,
S.
,
Levy
,
H.
,
Li
,
G.
, and
Rabitz
,
H.
, 1999, “
Fully Equivalent Operational Models for Atmospheric Chemical Kinetics Within Global Chemistry-Transport Models
,”
J. Geophys. Res.
0148-0227,
104
(
D23
), pp.
30417
30426
.
29.
Maas
,
U.
, and
Pope
,
S. B.
, 1992, “
Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds in Composition Space
,”
Combust. Flame
0010-2180,
88
, pp.
239
264
.
30.
Nafe
,
J.
, and
Mass
,
U.
, 2003, “
Hierarchical Generation of IDLMs of Higher Hydrocarbons
,”
Combust. Flame
0010-2180,
135
, pp.
17
26
.
31.
Bender
,
R.
,
Blasenbrey
,
T.
, and
Maas
,
U.
, 2000, “
Coupling of Detailed and IDLM-reduced chemistry With turbulent mixing
,”
Proc. Combust. Inst.
1540-7489 ,
28
(1), pp.
101
106
32.
Blasenbrey
,
T.
, and
Maas
,
U.
, 2000, “
IDLMs of Higher Hydrocarbons and the Hierarchy of Chemical Kinetics
,”
Proc. Combust. Inst.
1540-7489,
28
(2), pp.
1623
1630
33.
Yan
,
X.
, and
Maas
,
U.
, 2000, “
Intrinsic Low-Dimensional Manifolds of Heterogeneous Combustion Processes
,”
Proc. Combust. Inst.
1540-7489,
28
(2), pp.
1615
1621
.
34.
Raman
,
V.
,
Fox
,
R.
,
Harvey
,
A.
, and
West
,
D.
, 2001, “
CFD Analysis of Premixed Methane Chlorination Reactors With Detailed Chemistry
,”
Ind. Eng. Chem. Res.
0888-5885,
40
(23), pp.
5170
5176
.
35.
Raman
,
V.
,
Fox
,
R.
, and
Harvey
,
A.
, 2004, “
Hybrid Finite-Volume/ Transported PDF Simulations of a Partially Premixed Methane-Air Flame
,”
Combust. Flame
0010-2180,
136
(3), pp.
327
350
.
36.
Xu
,
J.
, and
Pope
,
S. B.
, 2000, “
PDF Calculations of Turbulent Nonpremixed Flames With Local Extinction
,”
Combust. Flame
0010-2180,
123
(3), pp.
281
307
.
37.
Saxena
,
V.
, and
Pope
,
S. B.
, 1998, “
PDF Calculations of Major and Minor Species in a Turbulent Piloted Jet Flame
,”
Sym. (Int.) Combust., [Proc.]
0082-0784,
1
, pp.
1081
1086
.
38.
Saxena
,
V.
, and
Pope
,
S. B.
, 1999, “
PDF Simulations of Turbulent Combustion Incorporating Detailed Chemistry
,”
Combust. Flame
0010-2180,
117
(1–2), pp.
340
350
.
39.
Chen
,
J.-Y.
, 2004, “
Analysis of In Situ Adapative Tabulation Performane for Combustion Chemistry and Improvement With a Modified Search Algorithm
,”
Combust. Sci. Technol.
0010-2202,
176
(7), pp.
1153
1169
.
40.
Goldin
,
G.
,
Madsen
,
J.
,
Straub
,
D.
,
Rogers
,
W.
, and
Castleton
,
K.
, 2003, “
Detailed Chemistry Simulations of a Trapped Vortex Generator
,”
Proceedings of the ASME Turbo-Expo, IGTI
, Atlanta, GA, 16–19 June, Vol.
1
, pp.
121
128
.
41.
Tang
,
Q.
, and
Pope
,
S. B.
, 2002, “
Implementation of Combustion Chemistry by In Situ Adaptive Tabulation of Rate-Controlled Constrained Equilibrium Manifolds
,”
Proc. Combust. Inst.
1540-7489,
29
(1), pp.
1411
1417
.
42.
Sankaran
,
V.
, and
Menon
,
S.
, 2000, “
Structure of Premixed Turbulent Flames in the Thin-Reaction-Zones Regime
,”
Proc. Combust. Inst.
1540-7489,
28
(1), pp.
203
209
.
43.
Shah
,
J.
, and
Fox
,
R.
, 1999, “
Computational Fluid Dynamics Simulation of Chemical Reactors: Application of In Situ Adaptive Tabulation to Methane Thermochlorination Chemistry
,”
Ind. Eng. Chem. Res.
0888-5885,
38
(11), pp.
4200
4212
.
44.
Zhao
,
W.
,
Montgomery
,
C.
,
Cremer
,
M.
,
Adams
,
B.
,
Eklund
,
D.
, and
Chen
,
J.
, 2003, “
Implementation of Reduced Mechanisms With ISAT into CFD Simulations of Full-Scale Combustion Systems
,”
Proceedings Energy Conversion and Resources—2003
, Washington, D.C., 15–29 Nov., pp.
27
32
.
45.
Pope
,
S. B.
, 1985, “
PDF Methods for Turbulent Reactive Flows
,”
Prog. Energy Combust. Sci.
0360-1285,
11
, pp.
119
192
.
46.
Mazumder
,
S.
, 2005, “
Adaptation of the In Situ Adaptive Tabulation (ISAT) Procedure for Efficient Computation of Surface Reactions
,”
Comput. Chem. Eng.
0098-1354,
30
(1), pp.
115
124
.
47.
Mathur
,
S.
, and
Murthy
,
J. Y.
, 1997, “
A Pressure Based Method for Unstructured Meshes
,”
Numer. Heat Transfer, Part B
1040-7790,
31
(2), pp.
195
216
.
48.
Ferziger
,
J.
, and
Peric
,
M.
, 1999,
Computational Methods for Fluid Dynamics
, 2nd ed,
Springer
,
New York
.
49.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, D.C.
50.
Van Doormal
,
J.
, and
Raithby
,
G.
, 1984, “
Enhancement of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
0149-5720,
7
, pp.
147
163
.
51.
Rhie
,
C. M.
, and
Chow
,
W. L.
, 1983, “
A Numerical Study of the Turbulent Flow Past an Isolated Airfoil With Trailing Edge Separation
,”
AIAA J.
0001-1452,
21
, pp.
1525
1532
.
52.
Miller
,
T. F.
, and
Schmidt
,
F. W.
, 1988, “
Use of a Pressure Weighted Interpolation Method for the Solution of Incompressible Navier-Stokes Equations With Non-Staggered Grid System
,”
Numer. Heat Transfer
0149-5720,
14
, pp.
213
233
.
53.
Deutschmann
,
O.
,
Behrendt
,
F.
, and
Warnatz
,
J.
, 1994, “
Modeling and Simulation of Heterogeneous Oxidation of Methane on a Platinum Foil
,”
Catal. Today
0920-5861,
21
, pp.
461
471
.
54.
Oliveira
,
A. A. M
, and
Kaviany
,
M.
, 2001, “
Nonequilibrium in the Transport of Heat and Reactants in Combustion in Porous Media
,”
Prog. Energy Combust. Sci.
0360-1285,
27
, pp.
523
545
.
55.
Liu
,
B. J. D.
, and
Pope
,
S. B.
, 2005, “
The Performance of In Situ Adaptive Tabulation in Computations of Turbulent Flames
,”
Combust. Theory Modell.
1364-7830,
9
(
4
), pp.
549
568
.
You do not currently have access to this content.