Thermal and electrical transport in a new class of nanocomposites composed of random isotropic two-dimensional ensembles of nanotubes or nanowires in a substrate (host matrix) is considered for use in the channel region of thin-film transistors (TFTs). The random ensemble of nanotubes is generated numerically and each nanotube is discretized using a finite volume scheme. To simulate transport in composites, the network is embedded in a background substrate mesh, which is also discretized using a finite volume scheme. Energy and charge exchange between nanotubes at the points of contact and between the network and the substrate are accounted for. A variety of test problems are computed for both network transport in the absence of a substrate, as well as for determination of lateral thermal and electrical conductivity in composites. For nanotube networks in the absence of a substrate, the conductance exponent relating the network conductance to the channel length is computed and found to match experimental electrical measurements. The effective thermal conductivity of a nanotube network embedded in a thin substrate is computed for a range of substrate-to-tube conductivity ratios. It is observed that the effective thermal conductivity of the composite saturates to a size-independent value for large enough samples, establishing the limits beyond which bulk behavior obtains. The effective electrical conductivity of carbon nanotube-organic thin films used in organic TFTs is computed and is observed to be in good agreement with the experimental results.

1.
Kagan
,
C. R.
, and
Andry
,
P.
, 2003,
Thin Film Transistors
,
Marcel–Dekker
,
New York
.
2.
Madelung
,
O.
, ed., 2000,
Technology and Applications of Amorphous Silicon
,
Springer
,
Berlin
.
3.
Dimitrakopoulos
,
C.
, and
Mascaro
,
D.
, 2001, “
Organic Thin-film Transistors: A Review of Recent Advances
,”
IBM J. Res. Dev.
0018-8646,
45
, pp.
11
27
.
4.
Curioni
,
A.
, and
Andreoni
,
W.
, 2001, “
Computer Simulations for Organic Light-Emitting Diodes
,”
IBM J. Res. Dev.
0018-8646,
45
, pp.
101
113
.
5.
Wisnieff
,
R.
, 1998, “
Printing Screens
,”
Nature (London)
0028-0836,
394
, pp.
225
.
6.
Pope
,
M.
, and
Swenberg
,
C. E.
, 1999,
Electronic Processes in Organic Crystals and Polymers
,
2nd ed.
,
Oxford University Press
,
New York
, pp.
337
340
.
7.
Peumans
,
P.
, 2003, “
Small Molecular Weight Organic Thin-Film Photodetectors and Solar Cells
,”
J. Appl. Phys.
0021-8979,
93
, pp.
3693
3723
.
8.
Tamura
,
T.
,
Ogata
,
K.
,
Takahashi
,
M.
,
Suzuki
,
K.
,
Yamaguchi
,
H.
, and
Todoroki
,
S.
, 2000, “
Crystal Growth of Laser Annealed Polycrystalline Silicon as a Function of Hydrogen Content of Precursors
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
621
, pp.
Q9.5.1
-
Q9.5.6
.
9.
Ucjikoga
,
S.
, 2002, “
Low-Temperature Polycrystalline Silicon Thin-Film Transistor Technologies for System-on-Glass Displays
,”
MRS Bull.
0883-7694,
27
, pp.
881
886
.
10.
Duan
,
X.
,
Niu
,
C.
,
Sahi
,
V.
,
Chen
,
J.
,
Parce
,
J. W.
,
Empedocles
,
S.
, and
Goldman
,
J. L.
, 2003, “
High-Performance Thin-Film Transistors Using Semiconductor Nanowires and Nanoribbons
,”
Nature (London)
0028-0836,
425
, pp.
274
278
.
11.
Snow
,
E. S.
,
Novak
,
J. P.
,
Campbell
,
P. M.
, and
Park
,
D.
, 2003, “
Random Networks of Carbon Nanotubes as an Electronic Material
,”
Appl. Phys. Lett.
0003-6951,
82
(
13
), pp.
2145
2147
.
12.
Menard
,
E.
,
Lee
,
K. J.
,
Khang
,
D. Y.
,
Nuzzo
,
R. G.
, and
Rogers
,
J. A.
, 2004, “
A Printable Form of Silicone for High-Performance Thin-Film Transistors on Plastic Substrates
,”
Appl. Phys. Lett.
0003-6951,
84
(
26
), pp.
5398
5400
.
13.
Bo
,
X. Z.
,
Lee
,
C. Y.
,
Strano
,
M. S.
,
Goldfinger
,
M.
,
Nuckolls
,
C.
, and
Blanchet
,
G. B.
, 2005, “
Carbon Nanotubes-Semiconductor Networks for Organic Electronics: The Pickup Stick Transistor
,”
Appl. Phys. Lett.
0003-6951,
86
, p.
182102
.
14.
Hu
,
L.
,
Hecht
,
D. S.
, and
Gruner
,
G.
, 2004, “
Percolation in Conducting and Transparent Carbon Nanotube Networks
,”
Nano Lett.
1530-6984,
4
(
12
), pp.
2513
2517
.
15.
Stauffer
,
D.
, and
Aharony
,
A.
, 1992,
Introduction to Percolation Theory
,
2nd ed.
,
Taylor and Francis
,
Philadelphia, PA
.
16.
Shenogina
,
N.
,
Shenogin
,
S.
,
Xue
,
L.
, and
Keblinski
,
P.
, 2005, “
On the Lack of Thermal Percolation in Carbon Nanotube Composites
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
133106
.
17.
Nan
,
C. W.
,
Liu
,
G.
,
Lin
,
Y.
, and
Li
,
M.
, 2004, “
Interface Effect on Thermal Conductivity of Carbon Nanotube Composites
,”
Appl. Phys. Lett.
0003-6951,
85
(
16
), pp.
3549
3551
.
18.
Yang
,
R.
, and
Chen
,
G.
, 2004, “
Thermal Conductivity Modeling of Periodic Two-Dimensional Nanocomposites
,”
Phys. Rev. B
0163-1829,
69
, p.
195316
.
19.
Milton
,
G. W.
, 2002,
The Theory of Composites
,
Cambridge University Press
,
New York
.
20.
Foygel
,
M.
,
Morris
,
R. D.
,
Anez
,
D.
,
Frencs
,
S.
, and
Sobolev
,
V. L.
, 2005, “
Theoretical and Computational Studies of Carbon Nanotube Composites and Suspensions: Electrical and Thermal Conductivity
,”
Phys. Rev. B
0163-1829,
71
(
10
), p.
104201
.
21.
Bieurck
,
M. J.
,
Liaguno
,
M. C.
,
Radosavljevic
,
M.
,
Hyun
,
J. K.
, and
Johnson
,
A. T.
, 2002, “
Carbon Nanotubes for Thermal Management
,”
Appl. Phys. Lett.
0003-6951,
80
(
15
), pp.
2767
2770
.
22.
Liu
,
C. H.
,
Hunag
,
H.
,
Wu
,
Y.
, and
Fan
,
S. S.
, 2004, “
Thermal Conductivity Improvement of Silicone Elastomer With Carbon Nanotube Loading
,”
Appl. Phys. Lett.
0003-6951,
84
(
21
), pp.
4248
4250
.
23.
Hasselman
,
D. P. H.
, and
Johnson
,
L. F.
, 1987, “
Effective Thermal Conductivity of Composites With Interfacial Barrier Resistance
,”
J. Compos. Mater.
0021-9983,
21
, pp.
508
515
.
24.
Lusti
,
H. R.
, and
Gusev
,
A. A.
, 2004, “
Finite Element Predictions for the Thermoelastic Properties of Nanotube Reinforced Polymers
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
12
, pp.
107
119
.
25.
Dresselhaus
,
M. S.
, and
Eklund
,
P. C.
, 2000, “
Phonons in Carbon Nanotubes
,”
Adv. Phys.
0001-8732,
49
(
6
), pp.
705
814
.
26.
Kumar
,
S.
,
Murthy
,
J. Y.
, and
Alam
,
M. A.
, 2005, “
Percolating Conduction in Finite Nanotube Networks
,”
Phys. Rev. Lett.
0031-9007,
95
, p.
066802
.
27.
Pierret
,
R. F.
, 1996,
Semiconductor Device Fundamentals
,
Addison–Wesley
,
New York
.
28.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
29.
Kundert
,
K. S.
, 1988,
Sparse User’s Guide
,
University of California Press
,
Berkeley, CA
.
30.
Lobb
,
C. J.
, and
Frank
,
D. J.
, 1984, “
Percolative Conduction and the Alexander-Orbach Conjecture in Two Dimensions
,”
Phys. Rev. B
0163-1829,
30
(
7
), pp.
4090
4092
.
31.
Frank
,
D. J.
, and
Lobb
,
C. J.
, 1988, “
Highly Efficient Algorithm for Percolative Transport Studies in Two Dimensions
,”
Phys. Rev. B
0163-1829,
37
(
1
), pp.
302
306
.
32.
Kim
,
P.
,
Shi
,
L.
,
Majumdar
,
A.
, and
McEuen
,
P. L.
, 2001, “
Thermal Transport Measurements of Individual Multiwalled Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
87
(
21
), p.
215502
.
33.
Li
,
D.
,
Wu
,
Y.
,
Kim
,
P.
,
Shi
,
L.
,
Yang
,
P.
, and
Majumdar
,
A.
, 2003, “
Thermal Conductivity of Individual Silicon Nanowires
,”
Appl. Phys. Lett.
0003-6951,
83
(
14
), pp.
2934
2936
.
34.
Prasher
,
R.
, 2005, “
Predicting the Thermal Resistance of Nanosized Constrictions
,”
Nano Lett.
1530-6984,
5
(
11
), pp.
2155
2159
.
35.
Huxtable
,
S. T.
,
Cahill
,
D. G.
,
Shenogin
,
S.
,
Xue
,
L.
,
Oziski
,
R.
,
Barone
,
P.
,
Usrey
,
M.
,
Strano
,
M. S.
,
Siddons
,
G.
,
Shim
,
M.
, and
Keblinski
,
P.
, 2003, “
Interfacial Heat Flow in Carbon Nanotube Suspensions
,”
Nat. Mater.
1476-1122,
2
, pp.
731
734
.
36.
Yu
,
C.
,
Saha
,
S.
,
Zhou
,
J.
,
Shi
,
L.
,
Cassell
,
A. M.
,
Cruden
,
B. A.
,
Ngo
,
Q.
, and
Li
,
J.
, 2006, “
Thermal Contact Resistance and Thermal Conductivity of a Carbon Nanofiber
,”
J. Heat Transfer
0022-1481,
128
, pp.
234
239
.
37.
Seidel
,
R. V.
,
Graham
,
A. P.
,
Rajasekharan
,
B.
,
Unger
,
E.
,
Liebau
,
M.
,
Duesberg
,
G. S.
,
Kreupl
,
F.
, and
Hoenlein
,
W.
, 2004 “
Bias Dependence and Electrical Breakdown of Small Diameter Single-Walled Carbon Nanotubes
,”
J. Appl. Phys.
0021-8979,
96
(
11
), pp.
6694
6699
.
You do not currently have access to this content.