Numerical simulation is performed in this study to explore film-cooling enhancement by injecting mist into the cooling air with a focus on investigating the effect of various modeling schemes on simulation results. The effect of turbulence models, dispersed-phase modeling, inclusion of different forces (Saffman, thermophoresis, and Brownian), trajectory tracking, and mist injection scheme is studied. The effect of flow inlet boundary conditions (with/without air supply plenum), inlet turbulence intensity, and the near-wall grid density on simulation results is also included. Simulation of a two-dimensional (2D) slot film cooling with a fixed blowing angle and blowing ratio shows a 2% mist (by mass) injected into the cooling air can increase the cooling effectiveness about 45%. The renormalization group (RNG) k-ε model, Reynolds stress model, and the standard k-ε turbulence model with an enhanced wall treatment produce consistent and reasonable results while the turbulence dispersion has a significant effect on mist film cooling through the stochastic trajectory calculation. The thermophoretic force slightly increases the cooling effectiveness, but the effect of Brownian force and Saffman lift is imperceptible. The cooling performance deteriorates when the plenum is included in the calculation due to the altered velocity profile and turbulence intensity at the jet exit plane. The results of this paper can provide guidance for corresponding experiments and serve as the qualification reference for future more complicated studies with 3D cooling holes, different blowing ratios, various density ratios, and rotational effect.

1.
Eriksen
,
V. L.
, and
Goldstein
,
R. J.
, 1974, “
Heat Transfer and Film Cooling Following Injection Through Inclined Tubes
,”
ASME J. Heat Transfer
0022-1481,
96
, pp.
239
245
.
2.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
, 1974, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
17
, pp.
595
607
.
3.
Jia
,
R.
,
Sunden
,
B.
,
Miron
,
P.
, and
Leger
,
B.
, 2003, “
Numerical and Experimental Study of the Slot Film Cooling Jet With Various Angles
,”
Proceedings of the ASME Summer Heat Transfer Conference
, Las Vegas, NV, July 21–23, pp.
845
856
.
4.
Bell
,
C. M.
,
Hamakawa1
,
H.
, and
Ligrani
,
P. M.
, 2000, “
Film Cooling From Shaped Holes
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
224
232
.
5.
Brittingham
,
R. A.
, and
Leylek
,
J. H.
, 2002, “
A Detailed Analysis of Film Cooling Physics: Part IV—Compound-Angle Injection With Shaped Holes
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
133
145
.
6.
Taslim
,
M. E.
, and
Khanicheh
,
A.
, 2005, “
Film Effectiveness Downstream of a Row of Compound Angle Film Holes
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
434
439
.
7.
Kwak
,
J. S.
, and
Han
,
J. C.
, 2003, “
Heat Transfer Coefficients and Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
494
502
.
8.
Mayhew
,
J. E.
,
Baughn
,
J. W.
, and
Byerley
,
A. R.
, 2004, “
Adiabatic Effectiveness of Film Cooling With Compound Angle Holes—The Effect of Blowing Ratio and Freestream Turbulence
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
501
502
.
9.
Adami
,
P.
,
Martelli
,
F.
,
Montomoli
,
F.
, and
Saumweber
,
C.
, 2002, “
Numerical Investigation of Internal Crossflow Film Cooling
,”
Proceedings ASME Turbo Expo 02
, Amsterdam, Netherlands, June 3–6,
3A
, pp.
51
63
.
10.
Wang
,
T.
,
Chintalapati
,
S.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
, 2000, “
Jet Mixing in a Slot
,”
Exp. Therm. Fluid Sci.
0894-1777,
22
, pp.
1
17
.
11.
Chaker
,
M.
,
Meher-Homji
,
C. B.
, and
Mee
,
M.
, 2002, “
Inlet Fogging of Gas Turbine Engines—Part A: Fog Droplet Thermodynamics, Heat Transfer and Practical Considerations
,”
ASME Proceedings of Turbo Expo 2002
, Amsterdam, Netherlands, June 3–6,
4
, pp.
413
428
.
12.
Petr
,
V.
, 2003, “
Analysis of Wet Compression in GT’s
,”
Energy and the Environment—Proceedings of the International Conference on Energy and the Environment
, Atlanta, GA, June 16–19,
1
, pp.
489
494
.
13.
Nirmalan
,
N. V.
,
Weaver
,
J. A.
, and
Hylton
,
L. D.
, 1998, “
An Experimental Study of Turbine Vane Heat Transfer With Water-Air Cooling
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
50
62
.
14.
Guo
,
T.
,
Wang
,
T.
, and
Gaddis
,
J. L.
, 2000, “
Mist/Steam Cooling in a Heated Horizontal Tube, Part 1: Experimental System, Part 2: Results and Modeling
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
360
374
.
15.
Guo
,
T.
,
Wang
,
T.
, and
Gaddis
,
J. L.
, 2001, “
Mist/Steam Cooling in a 180° Tube Bend
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
749
756
.
16.
Li
,
X.
,
Gaddis
,
J. L.
, and
Wang
,
T.
, 2003, “
Mist/Steam Cooling by a Row of Impinging Jets
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2279
2290
.
17.
Li
,
X.
,
Gaddis
,
J. L.
, and
Wang
,
T.
, 2003, “
Mist/Steam Heat Transfer With Jet Impingement onto a Concave Surface
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
438
446
.
18.
Heidmann
,
J. D.
,
Rigby
,
D. L.
, and
Ameri
,
A. A.
, 2000, “
A Three-Dimensional Coupled Internal/External Simulation of a Film-Cooled Turbine Vane
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
348
359
.
19.
Tyagi
,
M.
, and
Acharya
,
S.
, 2003, “
Large Eddy Simulation of Film Cooling Flow From an Inclined Cylindrical Jet
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
734
742
.
20.
Wang
,
M. J.
, and
Mayinger
,
F.
, 1995, “
Post-Dryout Dispersed Flow in Circular Bends
,”
Int. J. Multiphase Flow
0301-9322,
21
, pp.
437
454
.
21.
Aggarwal
,
S. K.
, and
Park
,
T. W.
, 1999, “
Dispersion of Evaporating Droplets in a Swirling Axisymmetric Jet
,”
AIAA J.
0001-1452,
37
, pp.
1578
1587
.
22.
Chen
,
X.-Q.
, and
Pereira
,
J. C. F.
, 1995, “
Prediction of Evaporating Spray in Anisotropically Turbulent Gas Flow
,”
Numer. Heat Transfer, Part A
1040-7782,
27
, pp.
143
162
.
23.
Li
,
X.
, and
Wang
,
T.
, 2005, “
Simulation of Film Cooling Enhancement With Mist Injection
,”
Proceedings ASME Turbo Expo 2005
, Reno-Tahoe, NV, June 6–9.
24.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1972,
Lectures in Mathematical Models of Turbulence
,
Academic Press
,
London, UK
.
25.
Wolfstein
,
M.
, 1969, “
The Velocity and Temperature Distribution of One-Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transfer
0017-9310,
12
, pp.
301
318
.
26.
Choudhury
,
D.
, 1993, “
Introduction to the Renormalization Group Method and Turbulence Modeling
,” Technical Memorandum, TM-107, Fluent Inc., Lebanon, NH.
27.
Wilcox
,
D. C.
, 1998,
Turbulence Modeling for CFD
,
DCW Industries, Inc.
,
La Canada, CA
.
28.
Menter
,
F.
, 1993, “
Zonal Two Equation Model for Aerodynamic Flows
,” AIAA Paper No. 93–2906.
29.
Munson
,
B.
,
Young
,
D.
, and
Okiishi
,
T.
, 2006,
Fundamentals of Fluid Mechanics
,
5th ed.
,
Wiley
,
New York
.
30.
Saffman
,
P. G.
, 1965, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid Mech.
0022-1120,
22
, pp.
385
400
.
31.
Talbot
,
L.
,
Cheng
,
R. K.
,
Schefer
,
R. W.
, and
Willis
,
D. R.
, 1980, “
Thermophoresis of Particles in a Heated Boundary Layer
,”
J. Fluid Mech.
0022-1120,
101
, pp.
737
758
.
32.
Li
,
A.
, and
Ahmadi
,
G.
, 1992, “
Dispersion and Deposition of Spherical Particles From Point Sources in a Turbulent Channel Flow
,”
Aerosol Sci. Technol.
0278-6826,
16
, pp.
209
226
.
33.
Ranz
,
W. E.
, and
Marshall
,
W. R.
, Jr.
, 1952, “
Evaporation From Drops, Part I
,”
Chem. Eng. Prog.
0360-7275,
48
, pp.
141
146
.
34.
Ranz
,
W. E.
, and
Marshall
,
W. R.
, Jr.
, 1952, “
Evaporation From Drops, Part II
,”
Chem. Eng. Prog.
0360-7275,
48
, pp.
173
180
.
35.
Kuo
,
K. Y.
, 1986,
Principles of Combustion
,
Wiley
,
New York
.
36.
Fluent, Inc.
, 2005,
Fluent Manual
, Version 6.2.12,
Fluent, Inc.
, Lebanon, NH.
37.
Rhee
,
D. H.
,
Lee
,
Y. S.
, and
Cho
,
H. H.
, 2002, “
Film Cooling Effectiveness and Heat Transfer of Rectangular-Shaped Film Cooling Holes
,”
Proceedings ASME Turbo Expo 2002
, Amsterdam, Netherlands, June 3–6,
3
, pp.
21
32
.
You do not currently have access to this content.