Pressure-based finite-volume techniques have emerged as the methods of choice for a wide variety of industrial applications involving incompressible fluid flow. In this paper, we trace the evolution of this class of solution techniques. We review the basics of the finite-volume method, and trace its extension to unstructured meshes through the use of cell-based and control-volume finite-element schemes. A critical component of the solution of incompressible flows is the issue of pressure-velocity storage and coupling. The development of staggered-mesh schemes and segregated solution techniques such as the SIMPLE algorithm are reviewed. Co-located storage schemes, which seek to replace staggered-mesh approaches, are presented. Coupled multigrid schemes, which promise to replace segregated-solution approaches, are discussed. Extensions of pressure-based techniques to compressible flows are presented. Finally, the shortcomings of existing techniques and directions for future research are discussed.

1.
Harlow
,
F. H.
, and
Fromm
,
J. E.
, 1965, “
Computer Experiments in Fluid Dynamics
,”
Sci. Am.
0036-8733,
212
, pp.
104
110
.
2.
Harlow
,
F. H.
, and
Welch
,
J. E.
, 1965, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With Free Surface
,”
Phys. Fluids
0031-9171,
8
, pp.
2182
2189
.
3.
Patankar
,
S. V.
, and
Spalding
,
D. B.
, 1972, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
1767
1806
.
4.
Jameson
,
A.
,
Baker
,
T. J.
, and
Weatherill
,
N. P.
, 1986, “
Calculation of Inviscid Flow over a Complete Aircraft
,”
AIAA 24th Aerospace Sciences Meeting, Reno, Nevada, January 6–9
, AIAA-86-0103.
5.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Corporation
,
Washington D.C.
6.
Patankar
,
S. V.
,
Pratap
,
V. S.
, and
Spalding
,
D. B.
, 1974, “
Prediction of Laminar Flow and Heat Transfer in Helically Coiled Pipes
,”
J. Fluid Mech.
0022-1120,
62
, p.
539
551
.
7.
Patankar
,
S. V.
,
Ivanovic
,
M.
, and
Sparrow
,
E. M.
, 1979, “
Analysis of Turbulent Flow and Heat Transfer in Internally Finned Tubes and Annuli
,”
ASME J. Heat Transfer
0022-1481,
101
, pp.
29
37
.
8.
Maliska
,
C. R.
, and
Raithby
,
G. D.
, 1984, “
A Method for Computing Three-Dimensional Flows Using Non-orthogonal Boundary-Fitted Coordinates
,”
Int. J. Numer. Methods Fluids
0271-2091,
4
,
519
537
.
9.
Shyy
,
W.
,
Tong
,
S. S.
, and
Correa
,
S. M.
, 1985, “
Numerical Recirculating Flow Calculation Using a Body-Fitted Coordinate System
,”
Numer. Heat Transfer
0149-5720,
8
, pp.
99
113
.
10.
Karki
,
K. C.
, and
Patankar
,
S. V.
, 1986, “
Calculation Procedure for Viscous Incompressible Flows in Complex Geometries
,”
Numer. Heat Transfer
0149-5720,
14
, pp.
295
307
.
11.
Baliga
,
B. R.
, and
Patankar
,
S. V.
, 1983, “
A Control-Volume Finite Element Method for Two-Dimensional Incompressible Fluid Flow and Heat Transfer
,”
Numer. Heat Transfer
0149-5720,
6
, pp.
245
261
.
12.
Prakash
,
C.
, and
Patankar
,
S. V.
, 1985, “
A Control-Volume-Based Finite-Element Method for Solving the Navier-Stokes Equations Using Equal-Order Velocity-Pressure Interpolation
,”
Numer. Heat Transfer
0149-5720,
8
, pp.
259
280
.
13.
Schneider
,
G. E.
, and
Raw
,
M. J.
, 1987, “
Control-Volume Finite Element Method for Heat Transfer and Fluid Flow Using Co-Located Variables -1. Computational Procedures
,”
Numer. Heat Transfer
0149-5720,
11
, pp.
363
390
.
14.
Demirdzic
,
I.
, and
Muzaferija
,
S.
, 1995, “
Numerical Method for Coupled Fluid Flow, Heat Transfer and Stress Analysis Using Unstructured Moving Meshes With Cells of Arbitrary Topology
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
125
, pp.
235
255
.
15.
Mathur
,
S. R.
, and
Murthy
,
J. Y.
, 1997, “
A Pressure-Based Method for Unstructured Meshes
,”
Numer. Heat Transfer, Part A
1040-7782,
31
, pp.
195
216
.
16.
Hsu
,
C. F.
, 1981, “
A Curvilinear-Coordinate Method for Momentum, Heat and Mass Transfer in Domains of Irregular Geometry
,” Ph.D. thesis, University of Minnesota, Minneapolis.
17.
Rhie
,
C. M.
, and
Chow
,
W. L.
, 1983, “
A Numerical Study of the Turbulent Flow Past an Isolated Airfoil With Trailing Edge Separation
,”
AIAA J.
0001-1452,
21
, pp.
1525
1532
.
18.
Vanka
,
S. P.
, 1986, “
Block-Implicit Multigrid Solution of Navier-Stokes Equations in Primitive Variables
,”
J. Comput. Phys.
0021-9991,
65
, pp.
138
158
.
19.
Vanka
,
S. P.
, 1986, “
Block-Implicit Multigrid Calculation of Two-Dimensional Recirculating Flows
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
59
, pp.
29
48
.
20.
Smith
,
K. M.
,
Cope
,
W. K.
, and
Vanka
,
S. P.
, 1993, “
Multigrid Procedure for Three-Dimensional Flows on Non-orthogonal Collocated Grids
,”
Int. J. Numer. Methods Fluids
0271-2091,
17
, pp.
887
904
.
21.
Jyotsna
,
R.
, and
Vanka
,
S. P.
, 1995, “
Multigrid Calculation of Steady, Viscous Flow in Triangular Cavity
,”
J. Comput. Phys.
0021-9991,
122
,
107
117
.
22.
Patankar
,
S. V.
, 1971, “
Calculation of Unsteady Compressible Flows Involving Shocks
,” Report No. UF∕N∕A∕4, Imperial College, London.
23.
Van
Doormal
,
J. P.
,
Raithby
,
G. D.
, and
McDonald
,
B. H.
, 1987, “
The Segregated Approach to Predicting Viscous Compressible Flows
,”
ASME J. Turbomach.
0889-504X,
109
, pp.
268
277
.
24.
Karki
,
K. C.
, and
Patankar
,
S. V.
, 1989, “
Pressure Based Calculation Procedure for Viscous Flows at All Speeds in Arbitrary Configurations
,”
AIAA J.
0001-1452,
27
, pp.
1167
1174
.
25.
Leonard
,
B. P.
, 1979, “
A Stable and Accurate Convective Modeling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
19
, pp.
59
98
.
26.
Hirsch
,
C.
, 1990,
Numerical Computation of Internal and External Flows: Computational Methods for Inviscid and Viscous Flows
,
Wiley
,
New York
.
27.
Laney
,
C. B.
, 1998,
Computational Gas Dynamics
,
Cambridge University Press
,
Cambridge
, U.K.
28.
Van
Doormaal
,
J. P.
, and G. D. Raithby, 1984, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
0149-5720,
7
, pp.
147
163
.
29.
Issa
,
R. I.
, 1982,“
Solution of the Implicit Discretized Fluid Flow Equations by Operator Splitting
,” Mechanical Engg. Report, FS∕82∕15, Imperial College, London.
30.
Issa
,
R. I.
,
Gosman
,
A. D.
, and
Watkins
,
A. P.
, 1986, “
The Computation of Compressible and Incompressible Recirculating Flows by a Non-Iterative Implicit Scheme
,”
J. Comput. Phys.
0021-9991,
62
, pp.
66
82
.
31.
Jang
,
D. S.
,
Jetli
,
R.
, and
Acharya
,
S.
, 1986, “
Comparison of the PISO, SIMPLER and SIMPLEC Algorithms for the Treatment of the Pressure-Velocity Coupling in Steady Flow Problems
,”
Numer. Heat Transfer
0149-5720,
10
(
3
), pp.
209
228
.
32.
Moukalled
,
F.
, and
Acharya
,
S.
, 1989, “
Improvements to Incompressible Flow Calculation on a Non-Staggered Curvilinear Grid
,”
Numer. Heat Transfer, Part B
1040-7790,
15
(
2
), pp.
131
152
.
33.
Prakash
,
C.
, 1981, “
A Finite Element Method for Predicting Flow Through Ducts With Arbitrary Cross-Sections
,” Ph.D. thesis, University of Minnesota, Minneapolis.
34.
Pope
,
S. B.
, 1978, “
The Calculation of Turbulent Recirculating Flows in General Orthogonal Coordinates
,”
J. Comput. Phys.
0021-9991,
26
, pp.
197
217
.
35.
Rastogi
,
A. K.
, 1984, “
Hydrodynamics in Tubes Perturbed by Curvilinear Obstructions
,”
ASME J. Fluids Eng.
0098-2202,
106
, pp.
262
269
.
36.
Raithby
,
G. D.
,
Galpin
,
P. F.
, and
Van Doormaal
,
J. P.
, 1986, “
Prediction of Heat and Fluid Flow in Complex Geometries Using General Orthogonal Coordinates
,”
Numer. Heat Transfer
0149-5720,
9
, pp.
125
142
.
37.
Demirdzic
,
I.
,
Gosman
,
A. D.
,
Issa
,
R. I.
, and
Peric
,
M.
, 1987, “
A Calculation Procedure for Turbulent Flows in Complex Geometries
,”
Comput. Fluids
0045-7930,
15
, pp.
251
273
.
38.
Segal
,
A.
,
Wesseling
,
P.
, Van
Kan
,
J.
,
Oosterlee
,
C. W.
, and
Kassels
,
K.
, 1992, “
Invariant Discretization of the Incompressible Navier-Stokes Equations in Boundary Fitted Co-ordinates
,”
Int. J. Numer. Methods Fluids
0271-2091,
15
, pp.
411
426
.
39.
Karki
,
K. C.
, 1986, “
A Calculation Procedure for Viscous Flows at All Speeds in Complex Geometries
,” Ph.D. thesis, University of Minnesota, Minneapolis.
40.
Davidson
,
L.
, and
Hedberg
,
P.
, 1989, “
Mathematical Derivation of a Finite-Volume Formulation for Laminar Flow in Complex Geometries
,”
Int. J. Numer. Methods Fluids
0271-2091,
9
, pp.
531
540
.
41.
Shyy
,
W.
,
Tong
,
S. S.
, and
Correa
,
S. M.
, 1985, “
Numerical Recirculating Flow Calculation Using a Body-Fitted Coordinate System
,”
Numer. Heat Transfer
0149-5720,
8
, pp.
99
113
.
42.
Vanka
,
S. P.
,
Chen
,
C.-J.
, and
Sha
,
W. T.
, 1980, “
A Semi-Implicit Calculation Procedure for Flow Described in Body-Fitted Coordinate Systems
,”
Numer. Heat Transfer
0149-5720,
3
, pp.
1
19
.
43.
Joshi
,
D. S.
, and
Vanka
,
S. P.
, 1991, “
Multigrid Calculation Procedure for Internal Flows in Complex Geometries
,”
Numer. Heat Transfer, Part B
1040-7790,
20
, pp.
61
80
.
44.
Kelkar
,
K. M.
, and
Choudhury
,
D.
, 1993, “
Numerical Method for the Computation of Flow and Scalar Transport Using Non-Orthogonal Boundary-Fitted Coordinates
,”
Numer. Heat Transfer, Part B
1040-7790,
24
, pp.
391
414
.
45.
He
,
P.
, and
Salcudean
,
M.
, 1994, “
A Numerical Method for 3D Viscous Incompressible Flows Using Non-Orthogonal Grids
,”
Int. J. Numer. Methods Fluids
0271-2091,
18
, pp.
449
469
.
46.
Melaen
,
M. C.
, 1992, “
Calculation of Fluid Flows With Staggered and Nonstaggered Curvilinear Nonorthogonal Grids—The Theory
,”
Numer. Heat Transfer, Part B
1040-7790,
21
, pp.
1
19
.
47.
Baliga
,
B. R.
, 1978, “
A Control-Volume-Based Finite Element Method for Convective Heat and Mass Transfer
,” Ph.D. thesis, University of Minnesota, Minneapolis.
48.
Baliga
,
B. R.
, and
Patankar
,
S. V.
, 1980, “
A New Finite Element Formulation for Convection-Diffusion Problems
,”
Numer. Heat Transfer
0149-5720,
3
, pp.
393
409
.
49.
Baliga
,
B. R.
, 1997, “
Control-Volume Finite Element Methods for Fluid Flow and Heat Transfer
,” in
Advances in Numerical Heat Transfer
,
J. W.
Minkowycz
and
M. E.
Sparrow
, eds.,
Taylor & Francis
,
New York
, Vol.
1
, Chap. 3, pp.
97
135
.
50.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 2000,
The Finite Element Method Vol. 3 Fluid Dynamics
,
5th ed.
,
McGraw-Hill
,
London
.
51.
Peric
,
M.
,
Kessler
,
R.
, and
Scheuerer
,
G.
, 1988, “
Comparison of Finite-Volume Numerical Methods With Staggered and Co-Located Grids
,”
Comput. Fluids
0045-7930,
16
, pp.
389
403
.
52.
Baliga
,
B. R.
, and
Atabaki
,
N.
, 2006, “
Control-Volume-Based Finite-Difference and Finite-Element Methods
,” in
Handbook of Numerical Heat Transfer
,
2nd ed.
,
J. W.
Minkowycz
,
M. E.
Sparrow
, and
Y. J.
Murthy
eds.,
John Wiley & Sons
,
New York
, Chap. 6.
53.
Venditti
,
D. A.
, 1998, “
An h-Adaptive Control-Volume Finite Element Method for Steady, Two-Dimensional Fluid Flow and Heat Transfer
,” M.Eng. thesis, McGill University, Montreal, Quebec, Canada.
54.
Spalding
,
D. B.
, 1972, “
A Novel Finite-Difference Formulation for Differential Expressions Involving Both First and Second Derivatives
,”
Int. J. Numer. Methods Eng.
0029-5981,
4
, pp.
551
559
.
55.
Raithby
,
G. D.
, 1976, “
Skew Upstream Difference Schemes for Problems Involving Fluid Flow
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
9
, pp.
153
164
.
56.
Masson
,
C.
, and
Baliga
,
B. R.
, 1994, “
A Control-Volume Finite Element for Dilute Gas-Solid Particle Flows
,”
Comput. Fluids
0045-7930,
23
, pp.
1073
1096
.
57.
Schneider
,
G. E.
, and
Raw
,
M. J.
, 1986, “
A Skewed Positive Influence Coefficient Upwind Procedure for Control-Volume-Based Finite Element Convection-Diffusion Computation
,”
Numer. Heat Transfer
0149-5720,
9
, pp.
1
26
.
58.
Saabas
,
H. J.
, and
Baliga
,
B. R.
,1994, “
A Co-Located Equal-Order Control-Volume Finite Element Method for Multidimensional, Incompressible Fluid Flow—Part I: Formulation
,”
Numer. Heat Transfer, Part B
1040-7790,
26
, pp.
381
407
.
59.
Tran
,
L. D.
,
Masson
,
C.
, and
Smaïli
,
A.
, 2006, “
A Stable Second-Order Mass-Weighted Upwind Scheme for Unstructured Meshes
,”
Int. J. Numer. Methods Fluids
0271-2091,
51
, pp.
749
771
.
60.
Elias
,
S. R.
,
Stubley
,
G. D.
, and
Raithby
,
G. D.
, 1997, “
An Adaptive Agglomeration Method for Additive Correction Multigrid
,”
Int. J. Numer. Methods Eng.
0029-5981,
40
, pp.
887
903
.
61.
Masson
,
C.
, and
Baliga
,
B. R.
, 1998, “
Simulation of Gas-Solid Particle Flows Over a Wide Range of Concentration
,”
Int. J. Numer. Methods Fluids
0271-2091,
28
, pp.
1441
1479
.
62.
Ledain-Muir
,
B.
, and
Baliga
,
B. R.
, 1988, “
Solution of Three-Dimensional Convection-Diffusion Problems Using Tetrahedral Elements and Flow-Oriented Upwind Interpolation
,”
Numer. Heat Transfer
0149-5720,
9
, pp.
253
272
.
63.
Costa
,
V. A. F.
,
Oliveira
,
L. A.
, and
Figueiredo
,
A. R.
, 1995, “
A Control-Volume-Based Finite Element Method for Three-Dimensional Incompressible Turbulent Fluid Flow, Heat Transfer and Related Phenomena
,”
Int. J. Numer. Methods Fluids
0271-2091,
21
, pp.
591
613
.
64.
Mathur
,
S. R.
, and
Murthy
,
J. Y.
, 2000, “
Unstructured Finite Volume Methods for Multi-Mode Heat Transfer
,” in
Advances in Heat Transfer
,
J. W.
Minkowycz
and
M. E.
Sparrow
eds.,
Taylor and Francis
,
New York
, Vol.
II
pp.
37
70
.
65.
Davidson
,
L.
, 1996, “
A Pressure Correction Method for Unstructured Meshes With Arbitrary Control Volumes
,”
Int. J. Numer. Methods Fluids
0271-2091,
22
, pp.
265
281
.
66.
Murthy
,
J. Y.
,
Minkowycz
,
W. J.
,
Sparrow
,
E. M.
, and
Mathur
,
S. R.
, 2006, “
Survey of Numerical Methods
,”
Handbook of Numerical Heat Transfer
,
2nd ed.
,
J. W.
Minkowycz
,
M. E.
Sparrow
, and
Y. J.
Murthy
eds.,
John Wiley & Sons
,
New York
, Chap. 1.
67.
Hutchinson
,
B. R.
, and
Raithby
,
G. D.
, 1986, “
A Multigrid Method Based on the Additive Correction Strategy
,”
Numer. Heat Transfer
0149-5720,
9
, pp.
511
537
.
68.
Van den Vorst
,
H. A.
, and
Sonneveld
,
P.
, 1990, “
CGSTAB: A More Smoothly Converging Variant of CGS
,” Technical Report, Delft University of Technology, Delft, The Netherlands.
69.
Van den Vorst
,
H. A.
, 1992, “
BI-CGSTAB: A Fast and Smoothly Converging Variant of BI-CG for the Solution of Non-Symmetric Linear Systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
13
, pp.
631
644
.
70.
Saad
,
Y.
, and
Schultz
,
M. H.
, 1986, “
GMRES: A Generalized Residual Algorithm for Solving Non-Symmetric Linear Systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
7
, pp.
856
869
.
71.
Demirdzic
,
I.
,
Lilek
,
Z.
, and
Peric
,
M.
, 1992, “
Fluid Flow and Heat Transfer Test Problems for Non-Orthogonal Grids
,”
Int. J. Numer. Methods Fluids
0271-2091,
15
, pp.
329
354
.
72.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
, 2001, “
Unstructured Mesh Methods for Combustion Problems
,” in
CFD in Industrial Combustion
,
E. C.
Baukal
and
X.
Li
, eds.,
CRC Press
,
Boca Raton
, FL, pp.
61
94
.
73.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
, 1998, “
Finite Volume Method for Radiative Heat Transfer Using Unstructured Meshes
,”
J. Thermophys. Heat Transfer
0887-8722,
12
(
3
), pp.
313
321
.
74.
Beam
,
R. M.
, and
Warming
,
R. F.
, 1978, “
An Implicit Factored Scheme for Compressible Navier-Stokes Equations
,”
AIAA J.
0001-1452,
16
, pp.
393
402
.
75.
MacCormack
,
R. W.
, 1982, “
A Numerical Method for Solving Equations of Compressible Viscous Flows
,”
AIAA J.
0001-1452,
20
, pp.
1275
1281
.
76.
Ni
,
R. H.
, 1982, “
A Multiple Grid Scheme for Solving the Euler Equations
,”
AIAA J.
0001-1452,
20
, pp.
1565
1571
.
77.
Choi
,
D.
, and
Merkle
,
C. L.
, 1985, “
Application of Time-Iterative Schemes to Incompressible Flows
,”
AIAA J.
0001-1452,
23
,
1518
1524
.
78.
Kwak
,
D.
,
Chang
,
J. L. C.
,
Shanks
,
S. P.
, and
Chakravarthy
,
S. R.
, 1986, “
A Three-Dimensional Incompressible Navier-Stokes Flow Solver Using Primitive Variables
,”
AIAA J.
0001-1452,
24
,
390
396
.
79.
Issa
,
R. I.
, and
Javareshkian
,
M. H.
, 1998, “
Pressure-Based Compressible Calculation Method Utilizing Total Variation Diminishing Schemes
,”
AIAA J.
0001-1452,
36
, pp.
1652
1657
.
80.
Moukalled
,
F.
, and
Darwish
,
M.
, 2001, “
A High-Resolution Pressure Based Algorithm for Fluid Flow at All Speeds
,”
J. Comput. Phys.
0021-9991,
168
, pp.
101
133
.
81.
Demirdzic
,
I.
,
Lilek
,
Z.
, and
Peric
,
M.
, 1993, “
A Collocated Finite Volume Method for Predicting Flows at All Speeds
,”
Int. J. Numer. Methods Fluids
0271-2091,
16
,
1029
1050
.
82.
Marchi
,
C. H.
, and
Maliska
,
C. R.
, 1994, “
A Nonorthogonal Finite-Volume Method for the Solution of All Speed Flows Using Co-located Variables
,”
Numer. Heat Transfer, Part B
1040-7790,
26
, pp.
293
311
.
83.
Shyy
,
W.
, and
Chen
,
M. H.
, 1992, “
Pressure-Based Multigrid Algorithm for Flow at All Speeds
,”
AIAA J.
0001-1452,
30
, pp.
2660
2669
.
84.
Rincon
,
J.
, and
Elder
,
R.
, 1997, “
A High-Resolution Pressure-Based Method for Compressible Flows
,”
Comput. Fluids
0045-7930,
26
pp.
217
231
.
85.
Demirdzic
,
I.
,
Issa
,
R. I.
, and
Lilek
,
Z.
, 1990, “
Solution Method for Viscous Flows at All Speeds in Complex Domains
,” in
Notes on Numerical Fluid Mechanics
,
P.
Wesseling
ed.,
Vieweg
,
Braunschweig
, Vol.
29
.
86.
Mathur
,
S. R.
, and
Murthy
,
J. Y.
, 1999, “
All Speed Flows on Unstructured Meshes Using a Pressure Correction Approach
,” AIAA Paper No. 99-3365.
87.
Lien
,
F. S.
, 2000, “
A Pressure-Based Unstructured Grid Method for All-Speed Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
33
, pp.
355
374
.
88.
Karimian
,
S. M. H.
, and
Schneider
,
G. E.
, 1994, “
Pressure-Based Computational Method for Compressible and Incompressible Flows
,”
J. Thermophys. Heat Transfer
0887-8722,
8
, pp.
267
274
.
89.
Darbandi
,
M.
, and
Schneider
,
G. E.
, 1997, “
Momentum Variable Procedure for Solving Compressible and Incompressible Flows
,”
AIAA J.
0001-1452,
35
,
1801
1805
.
90.
Lien
,
F. S.
, and
Leschziner
,
M. A.
, 1993, “
A Pressure-Velocity Solution Strategy for Compressible Flow and Its Application to Shock∕Boundary-Layer Interaction Using Second-Moment Turbulence Closure
,”
ASME J. Fluids Eng.
0098-2202,
115
, pp.
717
725
.
91.
McGuirk
,
J. J.
, and
Page
,
G. J.
, 1990, “
Shock Capturing Using a Pressure Correction Method
,”
AIAA J.
0001-1452,
29
, pp.
1751
1757
.
92.
Hafez
,
M.
,
South
,
J.
, and
Murman
,
E.
, 1979, “
Artificial Compressibility Methods for Numerical Solutions of Transonic Full Potential Equations
,”
AIAA J.
0001-1452,
17
, pp.
838
844
.
93.
Wornom
,
S. F.
, and
Hafez
,
M. M.
, 1986, “
Calculation of Quasi-One Dimensional Flows With Shocks
,”
Comput. Fluids
0045-7930,
14
, pp.
131
140
.
94.
Ferziger
,
J. H.
, and
Peric
,
M.
, 1996,
Computational Methods for Fluid Dynamics
,
Springer Verlag
,
Berlin
.
95.
Hackbusch
,
W.
, and
Trottenberg
,
U.
, 1982,
Multigrid Methods
,
Springer Verlag
,
Berlin
.
96.
Stuben
,
K.
, and
Trottenberg
,
U.
, 1982,
Multigrid Methods: Fundamental Algorithms, Model Problems, Analysis and Applications
, in
Lecture Notes in Mathematics No. 960
, pp.
1
176
,
Springer Verlag
,
Berlin
.
97.
Brandt
,
A.
, 1984,
Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics
, GMD Bonn, GMD-Studien Nr. 85.
98.
MGNET: Multigrid Bibliography, maintained by C. C. Douglas, Yale University.
99.
Trottenberg
,
U.
, and
Oosterlee
,
C. W.
, and
Schuller
,
A.
, 2001,
Multigrid
,
Academic Press
,
New York
.
100.
Sivaloganathan
,
S.
, and
Shaw
,
G. J.
, 1988, “
A Multigrid Method for Recirculating Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
8
(
4
), p
417
440
.
101.
Shyy
,
W.
,
Chen
,
M-H.
, and
Sun
,
C-S.
, 1992, “
Pressure-based Multigrid Algorithm for Flow at all Speeds
,”
AIAA J.
0001-1452,
30
(
11
), pp.
2660
2669
.
102.
Hortmann
,
M.
,
Peric
,
M.
, and
Scheurer
,
G.
, 1990, “
Finite Volume Multigrid Method for the Prediction of Incompressible Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
11
, pp.
189
207
.
103.
Lange
,
C. F.
,
Schafer
,
M.
, and
Durst
,
F.
, 2002, “
Local Block Refinement With a Multigrid Flow Solver
,”
Int. J. Numer. Methods Fluids
0271-2091,
38
, pp.
21
41
.
104.
Brandt
,
A.
, 1977, “
Multilevel Adaptive Solutions to Boundary-Value Problems
,”
Math. Comput.
0025-5718,
31
, pp.
333
390
.
105.
Henson
,
V. E.
, 2003, “
Multigrid Methods for Nonlinear Problems: An Overview
,”
Proc. SPIE
0277-786X,
5016
(
1
), pp.
36
48
.
106.
Vanka
,
S. P.
, 1986, “
A Calculation Procedure for Three-Dimensional Recirculating Flows
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
55
, pp.
321
338
.
107.
Vanka
,
S. P.
, 1986, “
Performance of a Multigrid Calculation Procedure in Three-Dimensional Sudden Expansion Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
6
, pp.
459
477
.
108.
Joshi
,
D. S.
, and
Vanka
,
S. P.
, 1991, “
Multigrid Calculation Procedure for Internal Flows in Complex Geometries
,”
Numer. Heat Transfer, Part B
1040-7790,
20
, pp.
61
80
.
109.
Caretto
,
L. S.
,
Gosman
,
A. D.
,
Patankar
,
S. V.
, and
Spalding
,
D. B.
, 1973, “
Two Calculation Procedures for Steady, Three-Dimensional Flows With Recirculation
,”
Proceedings of the 3rd International Conference on Numerical Methods in Fluid Mechanics. II
, pp.
60
68
.
110.
Galpin
,
P. F.
,
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
, 1985, “
Solution of the Incompressible Mass and Momentum Equations by Application of a Coupled Equation Line Solver
,”
Int. J. Numer. Methods Fluids
0271-2091,
5
(
7
), pp.
615
625
.
111.
He
,
P.
,
Salcudean
,
M.
,
Gartshore
,
I. S.
, and
Nowak
,
P.
, 1996, “
Multigrid Calculation of Fluid Flows in Complex 3D Geometries Using Curvilinear Grids
,”
Comput. Fluids
0045-7930,
25
(
4
), pp.
395
419
.
112.
Shyy
,
W.
,
Sun
,
C.-S.
,
Chen
,
M.-H.
, and
Chang
,
K. C.
, 1993, “
Multigrid Computation for Turbulent Recirculating Flows in Complex Geometries
,”
Numer. Heat Transfer, Part A
1040-7782,
23
(
1
), pp.
79
98
.
113.
Jyotsna
,
R.
, and
Vanka
,
S. P.
, 1995, “
A Pressure-Based Multigrid Procedure for the Navier-Stokes Equations on Unstructured Grids
,”
Proceedings of the 1995 Copper Mountain Conference on Multigrid Methods
, Copper Mountain, CO.
114.
Lin
,
F. B.
, and
Sotiropoulos
,
F.
, 1997, “
Strongly-Coupled Multigrid Method for 3-D Incompressible Flows Using Near-Wall Turbulence Closures
,”
ASME J. Fluids Eng.
0098-2202,
119
(
2
), pp.
314
324
.
115.
Zheng
,
X.
,
Liao
,
C.
,
Liu
,
C.
,
Sung
,
C. H.
, and
Huang
,
T. T.
, 1997, “
Multigrid Computation of Incompressible Flows Using Two-Equation Turbulence Models, Part I-Numerical Method
,”
ASME J. Fluids Eng.
0098-2202,
119
(
4
), pp.
893
899
.
116.
Vanka
,
S. P.
,
Krazinski
,
J. L.
, and
Nejad
,
A. S.
, 1989, “
Efficient Computational Tool for Ramjet Combustor Research
,”
J. Propul. Power
0748-4658,
5
(
4
), pp.
431
437
.
117.
Wang
,
G.
, 1994, “
Numerical Simulations of STOVL Hot Gas Ingestion in Ground Proximity Using a Multigrid Solution Procedure
,” MS thesis, University of Illinois at Urbana-Champaign, IL.
118.
Koobus
,
B.
,
Lallemand
,
M. H.
, and
Dervieux
,
A.
, 1994, “
Unstructured Volume Agglomeration MG: Solution of the Poisson Equation
,”
Int. J. Numer. Methods Fluids
0271-2091,
18
, pp.
27
42
.
119.
Mavriplis
,
D. J.
, and
Venkatakrishnan
,
V.
, 1995, “
A 3D Agglomeration Multigrid Solver for the Reynolds-Averaged Navier-Stokes Equations on Unstructured Meshes
,”
33rd Aerospace Sciences Meeting and Exhibit
, Jan. 9–12,
Reno
,
NV
.
120.
Mavriplis
,
D. J.
, 2000, “
Viscous Flow Analysis Using a Parallel Unstructured Multigrid Solver
,”
AIAA J.
0001-1452,
38
(
11
), pp.
2067
2076
.
121.
Mavriplis
,
D. J.
, 1999, “
Directional Agglomeration Multigrid Techniques for High-Reynolds-Number Viscous Flows
,”
AIAA J.
0001-1452,
37
(
10
), pp.
1222
1230
.
122.
Lambropoulos
,
N. K.
,
Koubogiannis
,
D. G.
, and
Giannakoglou
,
K. C.
, 2004, “
Acceleration of a Navier-Stokes Equation Solver for Unstructured Grids Using Agglomeration Multigrid and Parallel Processing
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
781
803
.
123.
Hwang
,
Y. H.
, 1995, “
Unstructured Additive Correction Multigrid Method for the Solution of Matrix Equations
,”
Numer. Heat Transfer, Part B
1040-7790,
27
, pp.
195
212
.
124.
Sathyamurthy
,
P. S.
, and
Patankar
,
S. V.
, 1994, “
Block-Correction-Based Multigrid Method for Fluid Flow Problems
,”
Numer. Heat Transfer, Part B
1040-7790,
25
(
4
), pp.
375
394
.
125.
Brandt
,
A.
,
McCormick
,
S. F.
, and
Ruge
,
J.
, 1984, “
Algebraic Multigrid (AMG) for Sparse Matrix Equations
,”
Sparsity and its Applications
,
D. J.
Evans
, ed.,
Cambridge University Press
,
Cambridge
, pp.
257
284
.
126.
Webster
,
R.
, 1994, “
An Algebraic Multigrid Solver for Navier-Stokes Problems
,”
Int. J. Numer. Methods Fluids
0271-2091,
18
, pp.
761
780
.
127.
Webster
,
R.
, 1996, “
An Algebraic Multigrid Solver for Navier-Stokes Problems in the Discrete Second Order Approximation
,”
Int. J. Numer. Methods Fluids
0271-2091,
22
, pp.
1103
1123
.
128.
Vanka
,
S. P.
, 1985, “
Block-Implicit Calculation of Steady Turbulent Recirculating Flows
,”
Int. J. Heat Mass Transfer
0017-9310,
28
(
11
), pp.
2093
2103
.
129.
Yu
,
C.-C.
, and
Heinrich
,
J. C.
, 1986, “
Petrov-Galerkin Methods for Time-Dependent Convective Transport Equation
,”
Int. J. Numer. Methods Eng.
0029-5981,
23
, pp.
883
901
.
130.
Ortega
,
J. M.
, and
Rheinboldt
,
W. C.
, 1980,
Iterative Solution of Nonlinear Equations in Several Variables
,
Academic Press
,
New York
.
131.
Haroutunian
,
V. H.
,
Engelman
,
M. S.
, and
Hasbani
,
I.
, 1993, “
Segregated Finite Element Algorithms for the Numerical Solution of Large-Scale Incompressible Flow Problems
,”
Int. J. Numer. Methods Fluids
0271-2091,
17
, pp.
323
348
.
132.
Hughes
,
T. J. R.
,
Franca
,
L. P.
, and
Becestra
,
M.
, 1986, “
A New Finite Element Formulation for Computational Fluid Dynamics, V: Circumventing the Babuska-Brezzi Condition: A Stable Petrov-Galerkin Formulation of the Stokes Problem Accomodating Equal-Order Interpolations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
59
, pp.
85
99
.
133.
Tezduyar
,
T. E.
,
Shih
,
R.
,
Mittal
,
S.
, and
Ray
,
S. E.
, 1990, “
Incompressible Flow Computation With Stabilized Bi-Linear and Linear Equal-Order Interpolation Velocity-Pressure Elements
,” Technical Report, University of Minnesota Supercomputing Institute Research Report UMSI90∕165.
134.
Amon
,
C. H.
, 2000, “
Spectral Element Methods for Unsteady Fluid Flow and Heat Transfer in Complex Geometries: Methodology and Applications
,”
Advances in Numerical Heat Transfer
,
W. J.
Minkowycz
and
E. M.
Sparrow
, eds.,
Taylor and Francis
,
New York
, Vol.
2
, Chap. 3, pp.
71
108
.
135.
Belytschko
,
T.
,
Lu
,
Y. Y.
, and
Gu
,
L.
, 1994, “
Element-Free Galerkin Methods
,”
Int. J. Numer. Methods Eng.
0029-5981,
37
, pp.
229
256
.
136.
Duarte
,
C. A.
, and
Oden
,
J. T.
, 1996, “
An Hp Adaptive Method Using Clouds
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
139
, pp.
237
262
.
137.
Liu
,
G. R.
, 2002,
Mesh Free Methods: Moving Beyond the Finite Element Method
,
CRC Press
,
Boca Raton, FL
.
138.
Atluri
,
S. N.
, and
Zhu
,
T.
, 1998, “
A New Meshless Local Petrov-Galerkin (MPLG) Approach in Computational Mechanics
,”
Comput. Mech.
0178-7675,
22
, pp.
117
127
.
139.
Pepper
,
D. W.
, 2006, “
Meshless Methods
,”
Handbook of Numerical Heat Transfer
,
2nd ed.
,
W. J.
Minkowycz
,
E. M.
Sparrow
, and
J. Y.
Murthy
, eds.,
John Wiley and Sons
,
New York
, pp.
225
247
.
140.
Raithby
,
G. D.
, and
Chui
,
E. H.
, 1990, “
A Finite-Volume Method for Predicting Radiant Heat Transfer in Enclosures With Participating Media
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
415
423
.
141.
Chai
,
J. S.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
, 1994, “
Finite-Volume Method for Radiation Heat Transfer
,”
J. Thermophys. Heat Transfer
0887-8722,
8
(
3
), pp.
419
425
.
142.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
, 1998, “
Finite Volume Method for Radiative Heat Transfer Using Unstructured Meshes
,”
J. Thermophys. Heat Transfer
0887-8722,
12
(
3
), pp.
313
321
.
143.
Wang
,
Z. J.
,
Przekwas
,
A. J.
, and
Liu
,
Y.
, 2002, “
A FV-TD Electromagnetic Solver Using Adaptive Cartesian Grids
,”
Comput. Phys. Commun.
0010-4655,
148
, pp.
17
29
.
144.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
, 2002, “
Computation of Sub-Micron Thermal Transport Using an Unstructured Finite Volume Method
,”
ASME J. Heat Transfer
0022-1481,
124
(
6
), pp.
1176
1181
.
You do not currently have access to this content.