This paper deals with the application of inverse concepts to the drying of bodies that undergo changes in their dimensions. Simultaneous estimation is performed of moisture diffusivity, together with the thermal conductivity, heat capacity, density, and phase conversion factor of a drying body, as well as the heat and mass transfer coefficients and the relative humidity of drying air. This was accomplished by using only temperature measurements. A mathematical model of the drying process of shrinking bodies has been developed where the moisture content and temperature fields in the drying body are expressed by a system of two coupled partial differential equations. The shrinkage effect was incorporated through the experimentally obtained changes of the specific volume of the drying body in an experimental convective dryer. The proposed method was applied to the process of drying potatoes. For the estimation of the unknown parameters, the transient readings of a single temperature sensor located in the midplane of the potato slice, exposed to convective drying, have been used. The Levenberg–Marquardt method and a hybrid optimization method of minimization of the least-squares norm are used to solve the present parameter estimation problem. Analyses of the sensitivity coefficients and of the determinant of the information matrix are presented as well.

1.
Luikov
,
A. V.
, 1972,
Teplomassoobmen
,
Energia
, Moscow.
2.
Karathanos
,
V. T.
,
Maroulis
,
Z. B.
,
Marinos-Kouris
,
D.
, and
Saravacos
,
D. G.
, 1996, “
Higrothermal and Quality Properties Applicable to Drying
,”
Drying Technol.
0737-3937,
14
, pp.
1403
1418
.
3.
Rahman
,
S.
, 1995,
Food Properties Handbook
,
CRC Press
, Boca Raton.
4.
Dantas
,
L. B.
,
Orlande
,
H. R. B.
, and
Cotta
,
R. M.
, 2001, “
Estimation of Dimensionless Parameters of Luikov’s System for Heat and Mass Transfer in Capillary Porous Media
,”
Int. J. Therm. Sci.
1290-0729,
41
, pp.
217
227
.
5.
Dantas
,
L. B.
,
Orlande
,
H. R. B.
,
Cotta
,
R. M.
, and
Lobo
,
P. D. C.
, 2000, “
Parameter Estimation in Moist Capillary Porous Media by Using Temperature Measurements
,”
Inverse Problems in Engineering Mechanics II
,
M.
Tanaka
and
G. S.
Dulikravich
, eds.,
Elsevier
, Amsterdam, pp.
53
62
.
6.
Dantas
,
L. B.
,
Orlande
,
H. R. B.
, and
Cotta
,
R. M.
, 2002, “
Effects of Lateral Heat Losses on the Parameter Estimation Problem in Moist Capillary Porous Media
,”
Inverse Problems in Engineering Mechanics III
,
M.
Tanaka
and
G. S.
Dulikravich
, eds.,
Elsevier
, Amsterdam, pp.
13
22
.
7.
Kanevce
,
G. H.
,
Kanevce
,
L. P.
, and
Dulikravich
,
G. S.
, 2000, “
Moisture Diffusivity Estimation by Temperature Response of a Drying Body
,”
Inverse Problems in Engineering Mechanics II
,
M.
Tanaka
and
G. S.
Dulikravich
, eds.,
Elsevier
, Amsterdam, pp.
43
52
.
8.
Kanevce
,
G. H.
,
Kanevce
,
L. P.
, and
Dulikravich
,
G. S.
, 2000, “
Influence of Boundary Conditions on Moisture Diffusivity Estimation by Temperature Response of a Drying Body
,”
Proc. 34th ASME National Heat Transfer Conf.
,
Pittsburgh
, PA, ASME paper No. NHTC2000-12296.
9.
Kanevce
,
G. H.
,
Kanevce
,
L. P.
, and
Dulikravich
,
G. S.
, 2002, “
Simultaneous Estimation of Thermophysical Properties and Heat and Mass Transfer Coefficients of a Drying Body
,”
Inverse Problems in Engineering Mechanics III
,
M.
Tanaka
and
G. S.
Dulikravich
, eds.,
Elsevier
, Amsterdam, pp.
3
12
.
10.
Kanevce
,
G. H.
,
Kanevce
,
L. P.
, and
Dulikravich
,
G. S.
, 2003, “
An Inverse Method for Drying at High Mass Transfer Biot Number
,”
Proc. HT03 ASME Summer Heat Transfer Conference
, Las Vegas, NV, ASME Paper No. HT20003-40146.
11.
Kanevce
,
G. H.
,
Kanevce
,
L. P.
,
Mitrevski
,
V. B.
, and
Dulikravich
,
G. S.
, 2000, “
Moisture Diffusivity Estimation From Temperature Measurements: Influence of Measurement Accuracy
,”
Proc. 12th Int. Drying Symposium (IDS’2000)
,
P. J. A. M.
Kerkhof
,
W. J.
Coumans
,
G. D.
Mooiweer
, eds.,
Noordwijkerhout
, The Netherlands, Paper No. 337.
12.
Kanevce
,
G. H.
, 1998, “
Numerical Study of Drying
,”
Proc. 11th International Drying Symposium (IDS ’98)
,
Halkidiki
, Greece, Vol.
A
, pp.
256
263
.
13.
Saravacos
,
G. D.
, and
Maroulis
,
Z. B.
, 2001,
Transport Properties of Foods
,
Marcel Dekker
, New York.
14.
Rovedo
,
C.
,
Suarez
,
C.
, and
Viollaz
,
P.
, 1998, “
Analysis of Moisture Profiles, Mass Biot Number and Driving Forces During Drying of Potato Slabs
,”
J. Food. Eng.
0260-8774,
36
, pp.
211
231
.
15.
Zogzas
,
N. P.
, and
Maroulis
,
Z. B.
, 1996, “
Effective Moisture Diffusivity Estimation From Drying Data: A Comparison Between Various Methods of Analysis
,”
Drying Technol.
0737-3937,
14
(
7&8
), pp.
1543
1573
.
16.
Dulikravich
,
G. S.
,
Martin
,
T. J.
,
Dennis
,
B. H.
, and
Foster
,
N. F.
, 1999, “
Multidisciplinary Hybrid Constrained GA Optimization
,”
Evolutionary Algorithms in Engineering and Computer Science: Recent Advances and Industrial Applications (EUROGEN’99)
,
K.
Miettinen
,
M. M.
Makela
,
P.
Neittaanmaki
and
J.
Periaux
, eds.,
Wiley
, Jyvaskyla, Finland, pp.
231
260
.
17.
Beck
,
J. V.
, and
Arnold
,
K. J.
, 1977,
Parameter Estimation in Engineering and Science
,
Wiley
, New York.
18.
Marquardt
,
D. W.
, 1963, “
An Algorithm for Least Squares Estimation of Nonlinear Parameters
,”
J. Soc. Ind. Appl. Math.
0368-4245,
11
, pp.
431
441
.
19.
Ozisik
,
M. N.
, and
Orlande
,
H. R. B.
, 2000,
Inverse Heat Transfer: Fundamentals and Applications
,
Taylor and Francis
, New York.
20.
Fletcher
,
R.
, and
Powell
,
M. J. D.
, 1963, “
A Rapidly Convergent Descent Method for Minimization
,”
Comput. J.
0010-4620,
6
, pp.
163
168
.
21.
Rao
,
S.
, 1996,
Engineering Optimization: Theory and Practice
,
3rd ed.
J. Wiley Interscience
, New York.
22.
Pshenichny
,
B. N.
, 1969,
Numerical Methods in Extremal Problems
,
Mir
, Moscow.
23.
Nelder
,
J. A.
, and
Mead
,
R.
, 1965, “
A Simplex Method for Function Minimization
,”
Comput. J.
0010-4620,
7
, pp.
308
313
.
24.
Goldberg
,
D. E.
, 1989,
Genetic Algorithms in Search, Optimization and Machine Learning
,
Addison-Wesley
, Cambridge, MA.
25.
Storn
,
R.
, 1997, “
Differential Evolution—A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
0925-5001,
11
(
4
), pp.
341
359
.
26.
Niesteruk
,
R.
, 1996, “
Changes at Thermal Properties of Fruits and Vegetables During Drying
,”
Drying Technol.
0737-3937,
14
, pp.
415
422
.
27.
Donsi
,
G.
,
Ferrari
,
G.
, and
Nigro
,
R.
, 1996, “
Experimental Determination of Thermal Conductivity of Apple and Potato of Different Moisture Contents
,”
J. Food. Eng.
0260-8774,
30
, pp.
263
268
.
28.
Aguilera
,
J. M.
,
Chirife
,
J.
,
Flink
,
J. M.
, and
Karel
,
M.
, 1975, “
Computer Simulation of Nonenzymatic Browing During Potato Dehydration
,”
Lebensm.-Wiss. Technol.
0023-6438,
8
, pp.
128
133
.
29.
Chirife
,
J.
, 1983, “
Fundamentals of the Drying Mechanism During Air Dehydration of Foods
,”
Advances in Drying
,
A. S.
Mujumdar
, ed.,
Hemisphere
, New York, pp.
73
102
.
30.
Frias
,
A.
,
Clemente
,
G.
,
Rossello
,
C.
, and
Mulet
,
A.
, 2003, “
Kinetics of Fluidized Bed Drying of Potato
,”
Proc. Symposium EUDrying 03
, Heraklion, Crete, Greece, pp.
224
230
.
31.
Gekas
,
V.
, and
Lamberg
,
I.
, 1991, “
Determination of Diffusion Coefficients in Volume-Changing Systems—Application in the Case of Potato Drying
,”
J. Food. Eng.
0260-8774,
14
, pp.
317
326
.
32.
Islam
,
M. N.
, and
Flink
,
J. M.
, 1982, “
Dehydration of Potato II. Osmotic Concentration and Its Effects on Air Drying Behaviour
,”
J. Food Technol.
0022-1163,
17
, pp.
373
385
.
33.
Khraisheh
,
M. A. M.
,
Cooper
,
T. J. R.
, and
Magee
,
T. R. A.
, 1997, “
Transport Mechanisms of Moisture During Air Drying Processes
,”
Trans. IChemE, Part C
0960-3085,
75
Part C, pp.
34
40
.
34.
Kiranoudis
,
C. T.
,
Maroulis
,
Z. B.
, and
Marinos-Kouris
,
D.
, 1992, “
Model Selection in Air Drying of Foods
,”
Drying Technol.
0737-3937,
10
(
4
), pp.
1097
1106
.
35.
Kiranoudis
,
C. T.
,
Maroulis
,
Z. B.
, and
Marinos-Kouris
,
D.
, 1995, “
Heat and Mass Transfer Model Building in Drying With Multiresponse Data
,”
Int. J. Heat Mass Transfer
0017-9310,
38
(
3
), pp.
463
480
.
36.
Magee
,
T. R. A.
, and
Wilkinson
,
C. P. D.
, 1992, “
Influence of Process Variables on the Drying of Potato Slices
,”
Int. J. Food Sci. Technol.
0950-5423,
27
, pp.
541
549
.
37.
Maroulis
,
Z. B.
,
Kiranoudis
,
C. T.
, and
Marinos-Kouris
,
D.
, 1995, “
Heat and Mass Transfer in Air Drying of Foods
,”
J. Food. Eng.
0260-8774,
26
(
1
), pp.
113
130
.
38.
McLaughlin
,
C. P.
, and
Magee
,
T. R. A.
, 1999, “
The Effects of Air temperature, Sphere Diameter and Puffing With CO2 on the Drying of Potato Spheres
,”
Drying Technol.
0737-3937,
17
(
1&2
), pp.
119
136
.
39.
McMinn
,
W. A. M.
, and
Magee
,
T. R. A.
, 1996, “
Air Drying Kinetics of Potato Cylinders
,”
Drying Technol.
0737-3937,
14
(
9
), pp.
2025
2040
.
40.
Mulet
,
A.
, 1994, “
Drying Modelling and Water Diffusivity in Carrots and Potatoes
,”
J. Food. Eng.
0260-8774,
22
, pp.
329
348
.
41.
Rovedo
,
C.
,
Suarez
,
C.
, and
Viollaz
,
P.
, 1995, “
Drying of Foods: Evaluation of Drying Model
,”
J. Food. Eng.
0260-8774,
26
, pp.
1
12
.
42.
Wang
,
N.
, and
Brennan
,
J. G.
, 1992, “
Effect of Water Binding on the Drying Behaviour of Potato
,”
Proc. 8th Int. Drying Symposium
, Montreal, Quebec, Canada, pp.
1350
1359
.
43.
Yusheng
,
Z.
, and
Poulsen
,
K. P.
, 1988, “
Diffusion in Potato Drying
,”
J. Food. Eng.
0260-8774,
7
, pp.
249
262
.
You do not currently have access to this content.